Matrix remodeling plays central roles in a range of physiological and pathological processes and is driven predominantly by the activity of matrix metalloproteinases (MMPs), which degrade extracellular matrix (ECM) proteins. Our understanding of how MMPs regulate cell and tissue dynamics is often incomplete as approaches are lacking and many strategies cannot provide high-resolution, quantitative measures of enzyme activity within tissue-like 3D microenvironments. Here, we incorporate a Förster resonance energy transfer (FRET) sensor of MMP activity into fully synthetic hydrogels that mimic many properties of the native ECM.
View Article and Find Full Text PDFFluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS is known to be an effective model photosensitiser for both Photodynamic Therapy (PDT) and Photochemical Internalisation (PCI). This microspectrofluorimetric study aimed firstly to investigate the uptake and subcellular localisation of TPPS, and evaluate the photo-oxidative mechanism using reactive oxygen species (ROS) and lipid peroxidation probes combined with appropriate ROS scavengers.
View Article and Find Full Text PDFCardiac myosin binding protein-C (cMyBP-C) is a thick filament-associated regulatory protein frequently found mutated in patients suffering from hypertrophic cardiomyopathy (HCM). Recent in vitro experiments have highlighted the functional significance of its N-terminal region (NcMyBP-C) for heart muscle contraction, reporting regulatory interactions with both thick and thin filaments. To better understand the interactions of cMyBP-C in its native sarcomere environment, in situ Foerster resonance energy transfer-fluorescence lifetime imaging (FRET-FLIM) assays were developed to determine the spatial relationship between the NcMyBP-C and the thick and thin filaments in isolated neonatal rat cardiomyocytes (NRCs).
View Article and Find Full Text PDFCell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known.
View Article and Find Full Text PDFFörster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM) have been coupled with multiphoton microscopy to image in vivo dynamics. However, the increase in optical aberrations as a function of depth significantly reduces the fluorescent signal, spatial resolution, and fluorescence lifetime accuracy. We present the development of a time-resolved FRET-FLIM imaging system with adaptive optics.
View Article and Find Full Text PDFFilopodia are peripheral F-actin-rich structures that enable cell sensing of the microenvironment. Fascin is an F-actin-bundling protein that plays a key role in stabilizing filopodia to support efficient adhesion and migration. Fascin is also highly up-regulated in human cancers, where it increases invasive cell behavior and correlates with poor patient prognosis.
View Article and Find Full Text PDFFluorescence lifetime imaging (FLIM) is a quantitative, intensity-independent microscopical method for measurement of diverse biochemical and physical properties in cell biology. It is a highly effective method for measurements of Förster resonance energy transfer (FRET), and for quantification of protein-protein interactions in cells. Time-domain FLIM-FRET measurements of these dynamic interactions are particularly challenging, since the technique requires excellent photon statistics to derive experimental parameters from the complex decay kinetics often observed from fluorophores in living cells.
View Article and Find Full Text PDFSignaling by the ubiquitously expressed tumor necrosis factor receptor 1 (TNFR1) after ligand binding plays an essential role in determining whether cells exhibit survival or death. TNFR1 forms distinct signaling complexes that initiate gene expression programs downstream of the transcriptional regulators NFκB and AP-1 and promote different functional outcomes, such as inflammation, apoptosis, and necroptosis. Here, we investigated the ways in which TNFR1 was organized at the plasma membrane at the nanoscale level to elicit different signaling outcomes.
View Article and Find Full Text PDFTime-correlated single-photon counting (TCSPC) is the gold standard for performing lifetime spectroscopy in biological assays. Traditional fluorescence lifetime imaging (FLIM) using laser scanning microscopes are inherently slow due to point scanning all pixels in the field-of-view. Wide-field implementations of TCSPC spectroscopy using microchannel plates benefit from particularly fast acquisition times at the expense of temporal resolution, and are fundamentally limited by photon counting rates.
View Article and Find Full Text PDFIn this Letter, we will discuss the development of a multifocal multiphoton fluorescent lifetime imaging system where four individual fluorescent intensity and lifetime planes are acquired simultaneously, allowing us to obtain volumetric data without the need for sequential scanning at different axial depths. Using a phase-only spatial light modulator (SLM) with an appropriate algorithm to generate a holographic pattern, we project a beamlet array within a sample volume of a size, which can be preprogrammed by the user. We demonstrate the capabilities of the system to image live-cell interactions.
View Article and Find Full Text PDFMyosin VI (MVI) has been found to be overexpressed in ovarian, breast and prostate cancers. Moreover, it has been shown to play a role in regulating cell proliferation and migration, and to interact with RNA Polymerase II (RNAPII). Here, we find that backfolding of MVI regulates its ability to bind DNA and that a putative transcription co-activator NDP52 relieves the auto-inhibition of MVI to enable DNA binding.
View Article and Find Full Text PDFLight-sheet microscopy has become an indispensable tool for fast, low phototoxicity volumetric imaging of biological samples, predominantly providing structural or analyte concentration data in its standard format. Fluorescence lifetime imaging microscopy (FLIM) provides functional contrast, but often at limited acquisition speeds and with complex implementation. Therefore, we incorporate a dedicated frequency domain CMOS FLIM camera and intensity-modulated laser into a light-sheet setup to add fluorescence lifetime imaging functionality, allowing the rapid acquisition of volumetric data with concentration independent contrast.
View Article and Find Full Text PDFCancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3-stromal interactions and production of the cancer cell motile factor RANKL.
View Article and Find Full Text PDFCancer cells are thought to use actin rich invadopodia to facilitate matrix degradation. Formation and maturation of invadopodia requires the co-ordained activity of Rho-GTPases, however the molecular mechanisms that underlie the invadopodia lifecycle are not fully elucidated. Previous work has suggested a formation and disassembly role for Rho family effector p-21 activated kinase 1 (PAK1) however, related family member PAK4 has not been explored.
View Article and Find Full Text PDFWe demonstrate an implementation of a centre-of-mass method (CMM) incorporating background subtraction for use in multifocal fluorescence lifetime imaging microscopy to accurately determine fluorescence lifetime in live cell imaging using the Megaframe camera. The inclusion of background subtraction solves one of the major issues associated with centre-of-mass approaches, namely the sensitivity of the algorithm to background signal. The algorithm, which is predominantly implemented in hardware, provides real-time lifetime output and allows the user to effectively condense large amounts of photon data.
View Article and Find Full Text PDFTime-correlated single photon counting (TCSPC) is a fundamental fluorescence lifetime measurement technique offering high signal to noise ratio (SNR). However, its requirement for complex software algorithms for histogram processing restricts throughput in flow cytometers and prevents on-the-fly sorting of cells. We present a single-point digital silicon photomultiplier (SiPM) detector accomplishing real-time fluorescence lifetime-activated actuation targeting cell sorting applications in flow cytometry.
View Article and Find Full Text PDFWe present a digital architecture for fast acquisition of time correlated single photon counting (TCSPC) events from a 32×32 complementary metal oxide semiconductor (CMOS) single photon avalanche detector (SPAD) array (Megaframe) to the computer memory. Custom firmware was written to transmit event codes from 1024-TCSPC-enabled pixels for fast transfer of TCSPC events. Our 1024-channel TCSPC system is capable of acquiring up to 0.
View Article and Find Full Text PDFWe present a CMOS chip 256 × 2 single photon avalanche diode (SPAD) line sensor, 23.78 µm pitch, 43.7% fill factor, custom designed for time resolved emission spectroscopy (TRES).
View Article and Find Full Text PDFWe demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein.
View Article and Find Full Text PDFDeregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly.
View Article and Find Full Text PDFSensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations.
View Article and Find Full Text PDFBreast cancer heterogeneity demands that prognostic models must be biologically driven and recent clinical evidence indicates that future prognostic signatures need evaluation in the context of early compared with late metastatic risk prediction. In pre-clinical studies, we and others have shown that various protein-protein interactions, pertaining to the actin microfilament-associated proteins, ezrin and cofilin, mediate breast cancer cell migration, a prerequisite for cancer metastasis. Moreover, as a direct substrate for protein kinase Cα, ezrin has been shown to be a determinant of cancer metastasis for a variety of tumour types, besides breast cancer; and has been described as a pivotal regulator of metastasis by linking the plasma membrane to the actin cytoskeleton.
View Article and Find Full Text PDFImaging the spatiotemporal interaction of proteins in vivo is essential to understanding the complexities of biological systems. The highest accuracy monitoring of protein-protein interactions is achieved using Förster resonance energy transfer (FRET) measured by fluorescence lifetime imaging, with measurements taking minutes to acquire a single frame, limiting their use in dynamic live cell systems. We present a diffraction limited, massively parallel, time-resolved multifocal multiphoton microscope capable of producing fluorescence lifetime images with 55 ps time-resolution, giving improvements in acquisition speed of a factor of 64.
View Article and Find Full Text PDFWe present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors.
View Article and Find Full Text PDF