Publications by authors named "Simon Allard"

Alzheimer's disease (AD) is associated with amyloidosis and dysfunction of the cholinergic system, which is crucial for learning and memory. However, the nature of acetylcholine signaling within regions of cholinergic-dependent plasticity and how it changes with experience is poorly understood, much less the impact of amyloidosis on this signaling. Therefore, we optically measure the release profile of acetylcholine to unexpected, predicted, and predictive events in visual cortex (VC)-a site of known cholinergic-dependent plasticity-in a preclinical mouse model of AD that develops amyloidosis.

View Article and Find Full Text PDF

Cue-evoked persistent activity is neural activity that persists beyond stimulation of a sensory cue and has been described in many regions of the brain, including primary sensory areas. Nonetheless, the functional role that persistent activity plays in primary sensory areas is enigmatic. However, one form of persistent activity in a primary sensory area is the representation of time between a visual stimulus and a water reward.

View Article and Find Full Text PDF

The primary sensory cortex has historically been studied as a low-level feature detector, but has more recently been implicated in many higher-level cognitive functions. For instance, after an animal learns that a light predicts water at a fixed delay, neurons in the primary visual cortex (V1) can produce "reward timing activity" (i.e.

View Article and Find Full Text PDF

Epidemiological, preclinical, and clinical studies have suggested a role for microdose lithium in reducing Alzheimer's disease (AD) risk by modulating key mechanisms associated with AD pathology. The novel microdose lithium formulation, NP03, has disease-modifying effects in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis at pre-plaque stages, before frank amyloid-β (Aβ) plaque deposition, during which Aβ is primarily intraneuronal. Here, we are interested in determining whether the positive effects of microdose lithium extend into early Aβ post-plaque stages.

View Article and Find Full Text PDF

The degeneration of basal forebrain cholinergic neurons (BFCNs) in Alzheimer's disease (AD) contributes to cognitive impairment. Nerve growth factor (NGF) secreted in the cerebral cortex is necessary for the phenotypic maintenance of BFCNs. AD is associated with disturbances in NGF metabolism, leading to reduced mature NGF levels and to an accumulation of its precursor, proNGF.

View Article and Find Full Text PDF

Evidence from human neuropathological studies indicates that the levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are compromised in Alzheimer's disease. However, the causes and temporal (pathology-dependent) evolution of these alterations are not completely understood. To elucidate these issues, we investigated the McGill-R-Thy1-APP transgenic rat, which exhibits progressive intracellular and extracellular amyloid-beta (Aβ) pathology and ensuing cognitive deficits.

View Article and Find Full Text PDF

In Alzheimer disease (AD), the accumulation of amyloid beta (Aβ) begins decades before cognitive symptoms and progresses from intraneuronal material to extracellular plaques. To date, however, the precise mechanism by which the early buildup of Aβ peptides leads to cognitive dysfunction remains unknown. Here, we investigate the impact of the early Aβ accumulation on temporal and frontal lobe dysfunction.

View Article and Find Full Text PDF

Current therapies for Alzheimer's disease (AD) offer partial symptomatic relief and do not modify disease progression. There is substantial evidence indicating a disease onset years before clinical diagnosis, at which point no effective therapy has been found. In this study, we investigated the efficacy of a new multi-target drug, M30, at relatively early stages of the AD-like amyloid pathology in a robust rat transgenic model.

View Article and Find Full Text PDF

Numerous studies have implicated the abnormal accumulation of intraneuronal amyloid-β (Aβ) as an important contributor to Alzheimer's disease (AD) pathology, capable of triggering neuroinflammation, tau hyperphosphorylation and cognitive deficits. However, the occurrence and pathological relevance of intracellular Aβ remain a matter of controversial debate. In this study, we have used a multidimensional approach including high-magnification and super-resolution microscopy, cerebro-spinal fluid (CSF) mass spectrometry analysis and ELISA to investigate the Aβ pathology and its associated cognitive impairments, in a novel transgenic rat model overexpressing human APP.

View Article and Find Full Text PDF

Chronic brain inflammation is associated with Alzheimer's disease (AD) and is classically attributed to amyloid plaque deposition. However, whether the amyloid pathology can trigger early inflammatory processes before plaque deposition remains a matter of debate. To address the possibility that a pre-plaque inflammatory process occurs, we investigated the status of neuronal, astrocytic, and microglial markers in pre- and post-amyloid plaque stages in a novel transgenic rat model of an AD-like amyloid pathology (McGill-R-Thy1-APP).

View Article and Find Full Text PDF

Background: We have previously shown a sprouting of sympathetic fibers into the upper dermis of the skin following subcutaneous injection of complete Freund's adjuvant (CFA) into the hindpaw. This sprouting correlated with an increase in pain-related sensitivity. We hypothesized that this sprouting and pain-related behavior were caused by an increase in nerve growth factor (NGF) levels.

View Article and Find Full Text PDF

In this review we highlight the evidence for an intracellular origin of Abeta (Aβ) amyloid peptides as well as the observations for a pathological accumulation of these peptides in Alzheimer's disease and Down syndrome, as well as in transgenic animal models. We deliberate on the controversy as to whether the intracellular Aβ immunoreactive material is simply an accumulation of unprocessed full length amyloid precursor protein (APP) or a mix of processed APP fragments including Aβ. Finally, we discuss the possible pathological significance of these intracellular APP fragments and the expected future research directions regarding this thought-provoking problem.

View Article and Find Full Text PDF

Background: A growing body of evidence indicates that inflammation is one of the earliest neuropathological events in Alzheimer's disease. Accordingly, we have recently shown the occurrence of an early, pro-inflammatory reaction in the hippocampus of young, three-month-old transgenic McGill-Thy1-APP mice in the absence of amyloid plaques but associated with intracellular accumulation of amyloid beta petide oligomers. The role of such a pro-inflammatory process in the progression of the pathology remained to be elucidated.

View Article and Find Full Text PDF

Cortical cholinergic atrophy plays a significant role in the cognitive loss seen with aging and in Alzheimer's disease (AD), but the mechanisms leading to it remain unresolved. Nerve growth factor (NGF) is the neurotrophin responsible for the phenotypic maintenance of basal forebrain cholinergic neurons in the mature and fully differentiated CNS. In consequence, its implication in cholinergic atrophy has been suspected; however, no mechanistic explanation has been provided.

View Article and Find Full Text PDF

It is well established that the cerebral cortex undergoes extensive remodeling in aging. In this study, we used behaviorally characterized rats to correlate age-related morphological changes with cognitive impairment. For this, young and aged animals were tested in the Morris water maze to evaluate their cognitive performance.

View Article and Find Full Text PDF

The standard model of system consolidation proposes that memories are initially hippocampus dependent and become hippocampus independent over time. Previous studies have demonstrated the involvement of the medial prefrontal cortex (mPFC) in the retrieval of remote memories. The transformations required to make a memory undergo system's consolidation are thought to require synaptic plasticity.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative pathology in which amyloid-beta (Abeta) peptide accumulates in different brain areas leading to deposition of plaques and a progressive decline of cognitive functions. After a decade in which a number of transgenic (Tg) mouse models mimicking AD-like amyloid-deposition pathology have been successfully generated, few rat models have been reported that develop intracellular and extracellular Abeta accumulation, together with impairment of cognition. The generation of a Tg rat reproducing the full AD-like amyloid pathology has been elusive.

View Article and Find Full Text PDF

In normal aging, the mammalian cortex undergoes significant remodeling. Although neuromodulation by dopamine and noradrenaline in the cortex is known to be important for proper cognitive function, little is known on how cortical noradrenergic and dopaminergic presynaptic boutons are affected in normal aging. Using rats we investigated whether these two neurotransmitter systems undergo structural reorganization in aging, and if these changes correlated with cognitive loss.

View Article and Find Full Text PDF

Sensory input to supraspinally projecting lamina I (LI) neurons arises both directly from primary afferents and via neurons intrinsic to the spinal dorsal horn. The types of neurons presynaptic to those projection neurons remain poorly known. To address this question we used retrogradely transported adenoviral vectors encoding green fluorescent protein (GFP) and a GFP-TTC (fragment C of the tetanus toxin) fusion protein, labeling respectively spinoparabrachial projection neurons and neurons presynaptic to them.

View Article and Find Full Text PDF

Basal forebrain cholinergic neurons are highly dependent on nerve growth factor (NGF) supply for the maintenance of their cholinergic phenotype as well as their cholinergic synaptic integrity. The precursor form of NGF, proNGF, abounds in the CNS and is highly elevated in Alzheimer's disease. In order to obtain a deeper understanding of the NGF biology in the CNS, we have performed a series of ex vivo and in vivo investigations to elucidate the mechanisms of release, maturation and degradation of this neurotrophin.

View Article and Find Full Text PDF

Reporter genes typically are used to monitor changes in transcriptional rate, which can vary quickly in response to a specific cellular event. Here we give background on bioluminescent reporters and assays and their uses in research.

View Article and Find Full Text PDF

The crystal structure of the human basophilic leukemia-expressed protein (BLES03, p5326, Hs.433573) was determined by single-wavelength anomalous diffraction and refined to an R factor of 18.8% (Rfree = 24.

View Article and Find Full Text PDF

The gene product of At3g22680 from Arabidopsis thaliana codes for a protein of unknown function. The crystal structure of the At3g22680 gene product was determined by multiple-wavelength anomalous diffraction and refined to an R factor of 16.0% (Rfree = 18.

View Article and Find Full Text PDF