Social influence plays a crucial role during the teen years, with adolescents supposedly exhibiting heightened sensitivity to their peers. In this study, we examine how social influence from different sources, particularly those with varying normative and informational significance, affect adolescents' opinion change. Furthermore, we investigated the underlying neural dynamics to determine whether these two behaviorally similar influences share their neural mechanisms.
View Article and Find Full Text PDFPeople change their preferences when exposed to others' opinions. We examine the neural basis of how peer feedback influences an individual's recommendation behavior. In addition, we investigate if the personality trait of 'agreeableness' modulates behavioral change and neural responses.
View Article and Find Full Text PDFHealthy aging is associated with deterioration of the sensorimotor system, which impairs balance and somatosensation. However, the exact age-related changes in the cortical processing of sensorimotor integration are unclear. This study investigated primary sensorimotor cortex (SM1) oscillations in the 15-30 Hz beta band at rest and following (involuntary) rapid stretches to the triceps surae muscles (i.
View Article and Find Full Text PDFSensory-guided actions entail the processing of sensory information, generation of perceptual decisions, and the generation of appropriate actions. Neuronal activity underlying these processes is distributed into sensory, fronto-parietal, and motor brain areas, respectively. How the neuronal processing is coordinated across these brain areas to support functions from perception to action remains unknown.
View Article and Find Full Text PDFLetter-speech sound (LSS) integration is crucial for initial stages of reading acquisition. However, the relationship between cortical organization for supporting LSS integration, including unimodal and multimodal processes, and reading skills in early readers remains unclear. In the present study, we measured brain responses to Finnish letters and speech sounds from 29 typically developing Finnish children in a child-friendly audiovisual integration experiment using magnetoencephalography.
View Article and Find Full Text PDFWhen combined with source modeling, magneto- (MEG) and electroencephalography (EEG) can be used to study long-range interactions among cortical processes non-invasively. Estimation of such inter-areal connectivity is nevertheless hindered by instantaneous field spread and volume conduction, which artificially introduce linear correlations and impair source separability in cortical current estimates. To overcome the inflating effects of linear source mixing inherent to standard interaction measures, alternative phase- and amplitude-correlation based connectivity measures, such as imaginary coherence and orthogonalized amplitude correlation have been proposed.
View Article and Find Full Text PDFThe neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance, and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight).
View Article and Find Full Text PDFFront Physiol
October 2012
Neuronal interactions form the basis for our brain function, and oscillations and synchrony are the principal candidates for mediating them in the cortical networks. Phase synchrony, where oscillatory neuronal ensembles directly synchronize their phases, enables precise integration between separated brain regions. However, it is unclear how neuronal interactions are dynamically coordinated in space and over time.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2010
Visual working memory (VWM) is used to maintain sensory information for cognitive operations, and its deficits are associated with several neuropsychological disorders. VWM is based on sustained neuronal activity in a complex cortical network of frontal, parietal, occipital, and temporal areas. The neuronal mechanisms that coordinate this distributed processing to sustain coherent mental images and the mechanisms that set the behavioral capacity limit have remained unknown.
View Article and Find Full Text PDFOscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance.
View Article and Find Full Text PDFOur ability to perceive weak signals is correlated among consecutive trials and fluctuates slowly over time. Although this "streaking effect" has been known for decades, the underlying neural network phenomena have remained largely unidentified. We examined the dynamics of human behavioral performance and its correlation with infraslow (0.
View Article and Find Full Text PDFLong-term video electroencephalographic (EEG) recording is currently a routine procedure in the presurgical evaluation of localization-related epilepsies. Cortical epileptogenic zone is usually localized from ictal recordings with intracranial electrodes, causing a significant burden to patients and health care. Growing literature suggests that epileptogenic networks exhibit aberrant dynamics also during seizure-free periods.
View Article and Find Full Text PDFNeuroimaging has revealed robust large-scale patterns of high neuronal activity in the human brain in the classical eyes-closed wakeful rest condition, pointing to the presence of a baseline of sustained endogenous processing in the absence of stimulus-driven neuronal activity. This baseline state has been shown to differ in major depressive disorder. More recently, several studies have documented that despite having a complex temporal structure, baseline oscillatory activity is characterized by persistent autocorrelations for tens of seconds that are highly replicable within and across subjects.
View Article and Find Full Text PDFWith Morse code, an acoustic message is transmitted using combinations of tone patterns rather than the spectrally and temporally complex speech sounds that constitute the spoken language. Using MEG recordings of the mismatch negativity (MMN, an index of permanent auditory cortical representations of native language speech sounds), we probed the dominant hemisphere for the developing Morse code representations in adult Morse code learners. Initially, the MMN to the Morse coded syllables was, on average, stronger in the hemisphere opposite to the one dominant for the MMN to native language speech sounds.
View Article and Find Full Text PDF