Publications by authors named "Siming Liao"

Article Synopsis
  • Millions of tons of shrimp and crab waste generated each year contain chitin, which can be efficiently processed using a newly isolated strain of Bacillus paralicheniformis known as GXMU-J23.1.
  • Genome sequencing of GXMU-J23.1 revealed various enzymes that break down chitin, including chitinase, which showed a significant increase in activity under optimal conditions.
  • The isolated chitinase, Chi23, operates best at 50°C and pH 5.0, transforming chitin into simpler sugars and offering insights for future enzyme enhancements to improve chitin degradation processes.
View Article and Find Full Text PDF

Introduction: Chitin, abundant in marine environments, presents significant challenges in terms of transformation and utilization. A strain, T22.7.

View Article and Find Full Text PDF

It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis.

View Article and Find Full Text PDF

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies.

View Article and Find Full Text PDF

The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules.

View Article and Find Full Text PDF

The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation.

View Article and Find Full Text PDF

Profiling the transcriptome changes involved in xylose metabolism by the fungus allows for the identification of potential targets for ethanol production processing. In the present study, the transcriptome of HJ-48 grown on xylose versus glucose was analyzed using nextgeneration sequencing technology. During xylose fermentation, numerous genes related to central metabolic pathways, including xylose reductase (XR) and xylitol dehydrogenase (XDH), were expressed at higher levels in HJ-48.

View Article and Find Full Text PDF

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus.

View Article and Find Full Text PDF

ST8Sia II (STX) is a highly homologous mammalian polysialyltransferase (polyST), which is a validated tumor-target in the treatment of cancer metastasis reliant on tumor cell polysialylation. PolyST catalyzes the synthesis of α2,8-polysialic acid (polySia) glycans by carrying out the activated CMP-Neu5Ac (Sia) to N- and O-linked oligosaccharide chains on acceptor glycoproteins. In this review article, we summarized the recent studies about intrinsic correlation of two polybasic domains, Polysialyltransferase domain (PSTD) and Polybasic region (PBR) within ST8Sia II molecule, and suggested that the critical amino acid residues within the PSTD and PBR motifs of ST8Sia II for polysialylation of Neural cell adhesion molecules (NCAM) are related to ST8Sia II activity.

View Article and Find Full Text PDF

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation.

View Article and Find Full Text PDF

Objectives: Bifunctional alginate lyase can efficiently saccharify alginate biomass and prepare functional oligosaccharides of alginate.

Results: A new BP-2 strain that produces alginate lyase was screened and identified from rotted Sargassum. A new alginate lyase, Alg17B, belonging to the polysaccharide lyase family 17, was isolated and purified from BP-2 fermentation broth by freeze-drying, dialysis, and ion exchange chromatography.

View Article and Find Full Text PDF

Background: α-Amylases are starch-degrading enzymes and used widely, the study on thermostability of α-amylase is a central requirement for its application in life science and biotechnology.

Objective: In this article, our motivation is to study how the effect of Ca2+ ions on the structure and thermal characterization of α-amylase (AGXA) from thermophilic Anoxybacillus sp.GXS-BL.

View Article and Find Full Text PDF

Background: The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation.

View Article and Find Full Text PDF

Background: Inhibition of α-amylase activity is an important strategy in the treatment of diabetes mellitus. An important treatment for diabetes mellitus is to reduce the digestion of carbohydrates and blood glucose concentrations. Inhibiting the activity of carbohydrate-degrading enzymes such as α-amylase and glucosidase significantly decreases the blood glucose level.

View Article and Find Full Text PDF

As a subset of glycosyltransferases, the family of sialyltransferases catalyze transfer of sialic acid (Sia) residues to terminal non-reducing positions on oligosaccharide chains of glycoproteins and glycolipids, utilizing CMP-Neu5Ac as the activated sugar nucleotide donor. In the four known sialyltransferase families (ST3Gal, ST6Gal, ST6GalNAc and ST8Sia), the ST8Sia family catalyzes synthesis of α2, 8-linked sialic/polysialic acid (polySia) chains according to their acceptor specificity. We have determined the 3D structural models of the ST8Sia family members, designated ST8Sia I (1), II(2), IV(4), V(5), and VI(6) using the Phyre2 server.

View Article and Find Full Text PDF

Duckweed is potentially an ideal succinic acid (SA) feedstock due to its high proportion of starch and low lignin content. Pretreatment methods, substrate content and nitrogen source were investigated to enhance the bioconversion of duckweed to SA and to reduce the costs of production. Results showed that acid hydrolysis was an effective pretreatment method because of its high SA yield.

View Article and Find Full Text PDF

All residues in an alpha helix can be characterized and dispositioned on a 2D the wenxiang diagram, which possesses the following features: (1) the relative locations of the amino acids in the α-helix can be clearly displayed regardless how long it is; (2) direction of an alphahelix can be indicated; and (3) more information regarding each of the constituent amino acid residues in an alpha helix. Owing to its intuitionism and easy visibility, wenxiang diagrams have had an immense influence on our understanding of protein structure, protein-protein interactions, and the effect of helical structural stability on protein conformational transitions. In this review, we summarize two recent applications of wenxiang diagrams incorporating NMR spectroscopy in the researches of the coiled-coil protein interactions related to the regulation of contraction or relaxation states of vascular smooth muscle cells, and the effects of α-helical stability on the protein misfolding in prion disease, in hopes that the gained valuable information through these studies can stimulate more and more widely applications of wenxiang diagrams in structural biology.

View Article and Find Full Text PDF

Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design.

View Article and Find Full Text PDF

Simultaneous improvements of thermostability and activity of a Ca-independent α-amylase from Bacillus subtilis CN7 were achieved by C-terminal truncation and his₆-tag fusion. C-terminal truncation, which eliminates C-terminal 194-amino-acid residues from the intact mature α-amylase, raised the turnover number by 35% and increased the thermostability in terms of half-life at 65 °C by threefold. A his₆-tag fusion at either the C- or N-terminus of truncated α-amylase further enhanced its turnover number by 59% and 37%, respectively.

View Article and Find Full Text PDF

In drug design and enzyme engineering, the information of interactions between receptors and ligands is crucially important. In many cases, the protein structures and drug-target complex structures are determined by a delicate balance of several weak molecular interaction types. Among these interaction forces several unconventional interactions play important roles, however, less familiar for researchers.

View Article and Find Full Text PDF

Background: Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful.

Results: Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in neutral form (His), or plays the cation role in protonated form (His+); (2) π-π stacking interactions between histidine and other aromatic amino acids; (3) Hydrogen-π interactions between histidine and other aromatic amino acids; (4) Coordinate interactions between histidine and metallic cations.

View Article and Find Full Text PDF

The cation-π interactions occur frequently within or between proteins due to six (Phe, Tyr, Trp, Arg, Lys, and His) of the twenty natural amino acids potentially interacting with metallic cations via these interactions. In this study, quantum chemical calculations and molecular orbital (MO) theory are used to study the energies and properties of cation-π interactions in biological structures. The cation-π interactions of H⁺ and Li⁺ are similar to hydrogen bonds and lithium bonds, respectively, in which the small, naked cations H⁺ and Li⁺ are buried deep within the π-electron density of aromatic molecules, forming stable cation-π bonds that are much stronger than the cation-π interactions of other alkali metal cations.

View Article and Find Full Text PDF

We optimized the conditions of mixed fermentation of very high gravity ethanol with cassava flour and sugarcane juice. Based on the single factor experiment, we screened the important parameters for very high gravity ethanol fermentation with cassava flour and sugarcane juice by the Plackeet-burman design. Then, we obtained the optimum values of the important parameters by the orthogonal experiments: the mixing ratio of cassava flour to sugarcane juice, 1:5; initial pH of fermentation, 4.

View Article and Find Full Text PDF

Background: It has been widely recognized that the mutations at specific directions are caused by the functional constraints in protein family and the directional mutations at certain positions control the evolutionary direction of the protein family. The mutations at different positions, even distantly separated, are mutually coupled and form an evolutionary network. Finding the controlling mutative positions and the mutative network among residues are firstly important for protein rational design and enzyme engineering.

View Article and Find Full Text PDF

Predicting the pH-activities of residues in proteins is an important problem in enzyme engineering and protein design. A novel predictor called 'Pred-pK(a)' was developed based on the physicochemical properties of amino acids and protein 3D structure. The Pred-pK(a) approach considers the influence of all other residues of the protein to predict the pK(a) value of an ionizable residue.

View Article and Find Full Text PDF