As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs).
View Article and Find Full Text PDFIn the current project, magnetic Bio-MOF-13 was used as an efficient carrier for the targeted delivery and controlled release of doxorubicin (DOX) to MDA-MB-231 cells. Magnetic Bio-MOF-13 was prepared by two strategies and compared to determine the optimal state of the structure. In the first path, Bio-MOF-13 was grown on the surface of FeO nanoparticles (), while in the second method, the two presynthesized materials were mixed together ().
View Article and Find Full Text PDFPhotothermal therapy (PTT) has developed in recent decades as a relatively safe method for the treatment of cancers. Recently, various species of gold and silver (Au and Ag) nanostructures have been developed and investigated to achieve PTT due to their highly localized surface plasmon resonance (LSPR) effect. Concisely, the collective oscillation of electrons on the surface of Au and Ag nanostructures upon exposure to a specific wavelength (depending on their size and shape) and further plasmonic resonance leads to the heating of the surface of these particles.
View Article and Find Full Text PDFTriazoles are biologically important compounds that play a crucial role in biomedical applications. In this study, we present an innovative and eco-friendly nanocatalyst system for synthesizing compounds the click reaction. The system is composed of Arabic gum (AG), iron oxide magnetic nanoparticles (FeO MNPs), (3-chloropropyl) trimethoxysilane (CPTMS), 2-aminopyridine (AP), and Cu(i) ions.
View Article and Find Full Text PDFIn the current study, we introduce a hybrid magnetic nanocomposite comprised of curcumin (Cur), iron oxide magnetic nanoparticles (FeO MNPs), melamine linker (Mel), and silver nanoparticles (Ag NPs). Initially, a facile in situ route is administrated for preparing the FeO@Cur/Mel-Ag effectual magnetic catalytic system. In addition, the advanced catalytic performance of the nanocomposite to reduce the nitrobenzene (NB) derivatives as hazardous chemical substances were assessed.
View Article and Find Full Text PDFIn the field of targeted drug delivery, the effects of size and morphology of drug nanocarriers are of great importance and need to be discussed in depth. To be concise, among all the various shapes of nanocarriers, rods and tubes with a narrow cross-section are the most preferred shapes for the penetration of a cell membrane. In this regard, several studies have focused on methods to produce nanorods and nanotubes with controlled optimized size and aspect ratio (AR).
View Article and Find Full Text PDFToday, various drug delivery systems (DDS) are utilized to carry and deliver the desired drugs to the targeted action area to reduce potential side effects and negative interactions. Nanomaterials are an excellent candidate for the delivery of potent drugs, as they enhance pharmacokinetic and pharmacodynamic properties. Herein, we present a new ciprofloxacin (CPFX) delivery system based on a polymeric nanocarrier (β-cyclodextrin) conjugated to a cell-adhesive dipeptide structure.
View Article and Find Full Text PDFNanoscale Adv
October 2022
Herein, a novel designed antimicrobial therapeutic drug delivery system is presented, in which halloysite nanotubes (HNTs) encapsulate a determined dosage of levofloxacin (lvx). Moreover, gold nanoparticles (AuNPs) have been embedded into the structure for plasmonic heating under irradiation of the green LED light (7 W, 526 nm). It was revealed that the plasmonic heating of the AuNPs leads to a controlled trend in the lvx release process.
View Article and Find Full Text PDFThis study presents a novel photocatalytic system for photocatalytic degradation of Eriochrome black-T (EBT) dye via green light-emitting diode (LED) light exposure. This photocatalyst is comprised of nanoscale components, i.e.
View Article and Find Full Text PDFHerein, a concise review of the latest developments in catalytic processes involving organic reactions is presented, focusing on magnetic catalytic systems (MCSs). In recent years, various micro- and nanoscale magnetic catalysts have been prepared through different methods based on optimized reaction conditions and utilized in complex organic synthesis or degradation reactions of pharmaceutical compounds. These biodegradable, biocompatible and eco-benign MCSs have achieved the principles of green chemistry, and thus their usage is highly advocated.
View Article and Find Full Text PDFAn efficient strategy for cancer therapy is presented, in which a tumor mass is initially pretreated with calcium hydroxide, then treated with Taxotere (TXT). In this regard, an advanced delivery system based on iron oxide nanoparticles has been designed. The surface of nanoparticles was functionalized with sortilin (SORT-1, a human IgG1 monoclonal antibody) that specifically encodes caov-4 ovarian cancerous cells.
View Article and Find Full Text PDF