Nanomaterials (Basel)
February 2024
Recent strides in nanomaterials science have paved the way for the creation of reliable, effective, highly accurate, and user-friendly biomedical systems. Pioneering the integration of natural cell membranes into sophisticated nanocarrier architectures, cell membrane camouflage has emerged as a transformative approach for regulated drug delivery, offering the benefits of minimal immunogenicity coupled with active targeting capabilities. Nevertheless, the utility of nanomaterials with such camouflage is curtailed by challenges like suboptimal targeting precision and lackluster therapeutic efficacy.
View Article and Find Full Text PDFDue to the scarcity of strategies to evaluate the multiple subtype monosaccharides in one specific protein simultaneously within a single assay, understanding the glycosylation mechanisms and revealing their roles in disease development become extremely challenging. Herein, a strategy of proximity DNAzyme-activated fluorescence imaging of multiplex saccharides in a protein on the cell surface via bio-orthogonal chemistry is reported. The multichannel proximity DNAzyme-activated fluorescence recovery enabled the highly selective and effective imaging analysis of multiplexed protein-specific glycosylation in situ and has been demonstrated.
View Article and Find Full Text PDFBiosens Bioelectron
January 2024
In recent years, liquid metals (LMs) have garnered increasing attention for their expanded applicability, and wide application potential in various research fields. Among them, gallium (Ga)-based LMs exhibit remarkable analytical performance in electrical and optical sensors, thanks to their excellent conductivity, large surface area, biocompatibility, small bandgap, and high elasticity. This review comprehensively summarizes the latest advancements in functional micro-/nanostructured Ga-based LMs for biochemical sensing and imaging applications.
View Article and Find Full Text PDFTo achieve rapid, accurate, and non-destructive diagnoses of nitrogen deficiency in cold land japonica rice, hyperspectral data were collected from field experiments to investigate the relationship between the nitrogen (N) content and the difference in the spectral reflectance relationship and to establish the hyperspectral reflectance difference inversion model of differences in the N content of rice. In this study, the hyperspectral reflectance difference was used to invert the nitrogen deficiency of rice and provide a method for the implementation of precision fertilization without reducing the yield of chemical fertilizer. For the purpose of constructing the standard N content and standard spectral reflectance the principle of minimum fertilizer application at maximum yield was used as a reference standard, and the acquired rice leaf nitrogen content and leaf spectral reflectance were differenced from the standard N content and standard spectral reflectance to obtain N content.
View Article and Find Full Text PDF