Publications by authors named "Simin Nie"

Thin, uniform, and conformal coatings on the active electrode materials are gaining more importance to mitigate degradation mechanisms in lithium-ion batteries. To avoid polarization of the electrode, mixed conductors are of crucial importance. Atomic layer deposition (ALD) is employed in this work to provide superior uniformity, conformality, and the ability to precisely control the stoichiometry and thickness of the desired coating materials.

View Article and Find Full Text PDF

The "hydrogen atom" of magnetic Weyl semimetals, with the minimum number of Weyl points, has received growing attention recently due to the possible presence of Weyl-related phenomena. Here, we report a nontrivial electronic structure of the ferromagnetic alluaudite-type compound K_{2}Mn_{3}(AsO_{4})_{3}. It exhibits only a pair of Weyl points constrained in the z direction by the twofold rotation symmetry, leading to extremely long Fermi arc surface states.

View Article and Find Full Text PDF

Charge neutrality and their expected itinerant nature makes excitons potential transmitters of information. However, exciton mobility remains inaccessible to traditional optical experiments that only create and detect excitons with negligible momentum. Here, using angle-resolved photoemission spectroscopy, we detect dispersing excitons in the quasi-one-dimensional metallic trichalcogenide, TaSe.

View Article and Find Full Text PDF

Based on irreducible representations (or symmetry eigenvalues) and compatibility relations (CR), a material can be predicted to be a topological/trivial insulator (satisfying CR) or a topological semimetal (violating CR). However, Weyl semimetals (WSMs) usually go beyond this symmetry-based strategy. In other words, Weyl nodes could emerge in a material, no matter if its occupied bands satisfy CR, or if the symmetry indicators are zero.

View Article and Find Full Text PDF
Article Synopsis
  • Topological crystalline insulators (TCIs) are unique insulating materials with electronic states that maintain their characteristics due to specific symmetrical properties of their crystal structures.
  • Recent theoretical advances suggest a new type of TCIs that are protected by rotation symmetries, featuring more than the typical number of surface Dirac cones, which are critical for understanding their electronic behavior.
  • The study reports the first observation of these rotation anomalies in the compound SrPb, where two massless Dirac fermions have been identified on a specific surface, enhancing the understanding of topological phases and their potential applications.
View Article and Find Full Text PDF

A quantum spin Hall (QSH) insulator hosts topological states at the one-dimensional (1D) edge, along which backscattering by nonmagnetic impurities is strictly prohibited. Its 3D analogue, a weak topological insulator (WTI), possesses similar quasi-1D topological states confined at side surfaces. The enhanced confinement could provide a route for dissipationless current and better advantages for applications relative to strong topological insulators (STIs).

View Article and Find Full Text PDF

Exploration of the novel relationship between magnetic order and topological semimetals has received enormous interest in a wide range of both fundamental and applied research. Here we predict that "soft" ferromagnetic material EuB_{6} can achieve multiple topological semimetal phases by simply tuning the direction of the magnetic moment. Explicitly, EuB_{6} is a topological nodal-line semimetal when the moment is aligned along the [001] direction, and it evolves into a Weyl semimetal with three pairs of Weyl points by rotating the moment to the [111] direction.

View Article and Find Full Text PDF
Article Synopsis
  • Parity-time symmetry is crucial for Dirac states in Dirac semimetals, but achieving magnetic Dirac semimetals has been challenging in research.* -
  • This study combines angle-resolved photoemission spectroscopy and density functional theory, revealing that band inversion can create a topologically nontrivial state in EuCdAs, resulting in ideal magnetic Dirac fermions.* -
  • Although the magnetic order breaks time reversal symmetry, it maintains inversion symmetry, leading to a new state featuring multiple topological insulator types, thus expanding the potential for magnetic topological Dirac fermions.*
View Article and Find Full Text PDF

Topological semimetals are characterized by the nodal points in their electronic structure near the Fermi level, either discrete or forming a continuous line or ring, which are responsible for exotic properties related to the topology of bulk bands. Here we identify by ab initio calculations a distinct topological semimetal that exhibits nodal nets comprising multiple interconnected nodal lines in bulk and have two coupled drumheadlike flat bands around the Fermi level on its surface. This nodal net semimetal state is proposed to be realized in a graphene network structure that can be constructed by inserting a benzene ring into each C─C bond in the bct-C_{4} lattice or by a crystalline modification of the (5,5) carbon nanotube.

View Article and Find Full Text PDF

Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations.

View Article and Find Full Text PDF

The topological materials have attracted much attention for their unique electronic structure and peculiar physical properties. ZrTe has host a long-standing puzzle on its anomalous transport properties manifested by its unusual resistivity peak and the reversal of the charge carrier type. It is also predicted that single-layer ZrTe is a two-dimensional topological insulator and there is possibly a topological phase transition in bulk ZrTe.

View Article and Find Full Text PDF

Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion.

View Article and Find Full Text PDF

We identify by ab initio calculations a novel topological semimetal carbon phase in all-sp^{2} bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C_{16}. Total-energy calculations show that bco-C_{16} is comparable to solid fcc-C_{60} in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-sp^{2} carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen.

View Article and Find Full Text PDF

2D materials with heterolayered structures beyond graphene are explored. A theoretically predicted superconductor-topological insulator-normal metal heterolayered structure is realized experimentally. The generated hybrid structure HfTe3 /HfTe5 /Hf has potential applications in both quantum-spin Hall effect-based and Majorana-based devices.

View Article and Find Full Text PDF