Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins.
View Article and Find Full Text PDFAn ongoing pandemic of coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, there have been various approaches for SARS-CoV-2 detection, each having its pros and cons. The current gold-standard method for SARS-CoV-2 detection, which offers acceptable specificity and sensitivity, is the quantitative reverse transcription-PCR (qRT-PCR).
View Article and Find Full Text PDFBackground: The human Y chromosome harbors genes that are mainly involved in the growth, development, sexual dimorphism, and spermatogenesis process. Despite many studies, the function of the male-specific region of the Y chromosome (MSY) awaits further clarification, and a cell-based approach can help in this regard.
Results: In this study, we have developed four stable transgenic male embryonic stem cell (ESCs) lines that can overexpress male-specific genes HSFY1, RBMY1A1, RPS4Y1, and SRY.