Publications by authors named "Simil Thomas"

Precise material design and surface engineering play a crucial role in enhancing the performance of optoelectronic devices. These efforts are undertaken to particularly control the optoelectronic properties and regulate charge carrier dynamics at the surface and interface. In this study, we used ultrafast scanning electron microscopy (USEM), which is a powerful and highly sensitive surface tool that provides unique information about the photoactive charge dynamics of material surfaces selectively and spontaneously in real time and space in high spatial and temporal resolution.

View Article and Find Full Text PDF

Cutting-edge techniques utilizing continuous films made from pure, novel semiconductive materials offer promising pathways to achieve high performance and cost-effectiveness for X-ray detection. Semiconductive metal-organic framework (MOF) glass films are known for their remarkably smooth surface morphology, straightforward synthesis, and capability for large-area fabrication, presenting a new direction for high-performance X-ray detectors. Here, a novel material centered on MOF glasses for highly uniform glass film fabrication customized for X-ray detection is introduced.

View Article and Find Full Text PDF

Novel scintillation materials have played an indispensable role in the recent remarkable progress witnessed for X-ray imaging technology. Herein, a high-performance X-ray scintillation screen was developed based on a highly efficient hybrid system combining inorganic ZnS (Ag) with thermally activated delayed fluorescence (TADF) scintillator materials via an interfacial energy transfer (EnT) mechanism. ZnS (Ag) has a high X-ray absorption capacity and functions as the initial layer for efficiently converting high-energy X-ray photons into low-energy visible light (acting as a sensitizer) while also serving as an energy donor.

View Article and Find Full Text PDF

Aqueous ammonium ion batteries have garnered significant research interest due to their safety and sustainability advantages. However, the development of reliable ammonium-based full batteries with consistent electrochemical performance, particularly in terms of cycling stability, remains challenging. A primary issue stems from the lack of suitable anode materials, as the relatively large NH ions can cause structural damage and material dissolution during battery operation.

View Article and Find Full Text PDF

Here, we report the first utilization of covalent organic frameworks (COFs) in optical wireless communication (OWC) applications. In the solid form, aggregation-induced emission (AIE) luminogen often shows promising emissive characteristics that augment radiative decays and improve fluorescence. We have synthesized an through the Knoevenagel condensation reaction by taking advantage of the ability to carefully design and alter the COF structure by integrating an AIE luminogen with linear building blocks.

View Article and Find Full Text PDF

Wafer-scale transfer processes of 2D materials significantly expand their application space in scalable microelectronic devices with excellent and tunable properties through van der Waals (vdW) stacking. Unlike many 2D materials, wafer-scale transfer of MXene films for vdW contact engineering has not yet been reported. With their rich surface chemistry and tunable properties, the transfer of MXenes can enable enormous possibilities in electronic devices using interface engineering.

View Article and Find Full Text PDF

Tracking the dynamics of ultrafast hole injection into copper thiocyanate (CuSCN) at the interface can be experimentally challenging. These challenges include restrictions in accessing the ultraviolet spectral range through transient electronic spectroscopy, where the absorption spectrum of CuSCN is located. Time-resolved vibrational spectroscopy solves this problem by tracking marker modes at specific frequencies and allowing direct access to dynamical information at the molecular level at donor-acceptor interfaces in real time.

View Article and Find Full Text PDF

Intermolecular charge transfer (CT) complexes have emerged as versatile platforms with customizable optical properties that play a pivotal role in achieving tunable photoresponsive materials. In this study, we introduce an innovative approach for enhancing the modulation bandwidth and net data rates in optical wireless communications (OWCs) by manipulating combinations of monomeric molecules within intermolecular CT complexes. Concurrently, we extensively investigate the intermolecular charge transfer mechanism through diverse steady-state and ultrafast time-resolved spectral techniques in the mid-infrared range complemented by theoretical calculations using density functional theory.

View Article and Find Full Text PDF

One of the most effective approaches to optimizing the performance of perovskite solar cells is to fully understand the ultrafast carrier dynamics at the interfaces between absorber and transporting layers at both the molecular and atomic levels. Here, the injection dynamics of hot and relaxed charge carriers at the interface between the hybrid perovskite, formamidinium lead bromide (FAPbBr), and the organic electron acceptor, IEICO-4F, are investigated and deciphered by using femtosecond (fs) mid-infrared (IR), transient absorption (TA), and fluorescence spectroscopies. The visible femtosecond-TA measurements reveal the generation of hot carriers and their transition to free carriers in the pure FAPbBr film.

View Article and Find Full Text PDF

X-ray imaging scintillators play a crucial role in medical examinations and safety inspections, making them an essential technology in our modern lives. However, commercially available high-performance scintillators are fabricated exclusively from ceramic materials that require harsh preparation conditions and are costly to produce. Organic scintillators have emerged as a promising alternative due to their transparency and ease of fabrication at a low cost.

View Article and Find Full Text PDF

Inorganic halide perovskite nanocrystals (NCs) are being widely explored as next-generation optoelectronic materials. Critical to understanding the optoelectronic properties and stability behavior of perovskite NCs is the material's surface structure, where the local atomic configuration deviates from that of the bulk. Through low-dose aberration-corrected scanning transmission electron microscopy and quantitative imaging analysis techniques, we directly observed the atomic structure at the surface of the CsPbBr NCs.

View Article and Find Full Text PDF

X-ray imaging technology is critical to numerous different walks of daily life, ranging from medical radiography and security screening all the way to high-energy physics. Although several organic chromophores are fabricated and tested as X-ray imaging scintillators, they generally show poor scintillation performance due to their weak X-ray absorption cross-section and inefficient exciton utilization efficiency. Here, a singlet fission-based high-performance organic X-ray imaging scintillator with near unity exciton utilization efficiency is presented.

View Article and Find Full Text PDF

Nano-heterostructures have attracted immense attention recently due to their remarkable interfacial properties determined by the heterointerface of different nanostructures. Here, using first-principles density functional theory (DFT) calculations, we examine what range the variable electronic properties such as the electronic band gap can be tuned by combining two dissimilar nanostructures consisting of atomically thin nanostructured MoS clusters with small silver and gold nanoparticles (Ag/Au NPs). Most interestingly, our calculations show that the electronic band gap of the nanostructured MoS cluster can be tuned from 2.

View Article and Find Full Text PDF

Emergent quantum phenomena in electronically coupled two-dimensional heterostructures are central to next-generation optical, electronic, and quantum information applications. Tailoring electronic band gaps in coupled heterostructures would permit control of such phenomena and is the subject of significant research interest. Two-dimensional polymers (2DPs) offer a compelling route to tailored band structures through the selection of molecular constituents.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are molecule-based 2D and 3D materials that possess a wide range of mechanical and electronic properties. We have performed a joint experimental and theoretical study of the electronic structure of boroxine-linked COFs grown under ultrahigh vacuum conditions and characterized using scanning tunneling spectroscopy on Au(111) and hBN/Cu(111) substrates. Our results show that a single hBN layer electronically decouples the COF from the metallic substrate, thus suppressing substrate-induced broadening and revealing new features in the COF electronic local density of states (LDOS).

View Article and Find Full Text PDF

A series of rubrene derivatives were synthesized and the influence of the side group in enhancing photo-oxidative stability was evaluated. Photo-oxidation half-lives were determined via UV-vis absorption spectroscopy, which revealed thiophene containing derivatives to be the most stable species. The electron affinity of the compounds did not correlate with stability as previously reported in literature.

View Article and Find Full Text PDF

While the search for 2D organic semimetallic Dirac materials displaying, like graphene, a Dirac cone at the Fermi level remains active, attention is also being paid to the quantum phase transition from semimetal to antiferromagnet. Such a transition in graphene-like materials is predicted based on theoretical investigations of the 2D honeycomb lattice; it occurs (within a Hubbard model) when the on-site electron-electron Coulomb repulsion (U) is much larger than the nearest-neighbor inter-site electronic coupling (t). Here, monomers carrying long-lived radicals are considered and used as building blocks to design 2D hexagonal π-conjugated covalent organic frameworks (COFs).

View Article and Find Full Text PDF

An all-acceptor napthalenediimide-bithiazole-based co-polymer, P(NDI2OD-BiTz), was synthesized and characterized for application in thin-film transistors. Density functional theory calculations point to an optimal perpendicular dihedral angle of 90° between acceptor units along isolated polymer chains; yet optimized transistors yield electron mobility of 0.11 cm/(V s) with the use of a zwitterionic naphthalene diimide interlayer.

View Article and Find Full Text PDF

Poly(isoindigo-alt-3,4-difluorothiophene) (PIID[2F]T) analogues used as "polymer acceptors" in bulk-heterojunction (BHJ) solar cells achieve >7 % efficiency when used in conjunction with the polymer donor PBFTAZ (model system; copolymer of benzo[1,2-b:4,5-b']dithiophene and 5,6-difluorobenzotriazole). Considering that most efficient polymer-acceptor alternatives to fullerenes (e.g.

View Article and Find Full Text PDF

Branched-alkyl-substituted poly(thieno[3,4-c]pyrrole-4,6-dione-alt-3,4-difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low-band-gap polymer donor (PCE10) commonly used with fullerenes. The "all-polymer" BHJ devices made with PTPD[2F]T achieve efficiencies of up to 4.4 %.

View Article and Find Full Text PDF

n-Type doping of mixed single- and double-layer graphene grown by chemical vapor deposition (CVD) using decamethyl-cobaltocene reveals a local-quasilinear relationship between the work function and the logarithm of the dopant solution concentration. The relationship that arises from bandgap opening is deduced by comparing the relationship between the two factors for single- or double-layer graphene. This work has extensive applicability and practical significance in doping CVD-grown graphene.

View Article and Find Full Text PDF

Linear and non-linear optical properties of indeno[2,1-b]fluorene (1) and its structural isomers with 20 π-electrons have been studied using many body methods. As compared to other π electron systems of similar conjugation length, the experimentally measured optical gap (vertical excitation energy) and the singlet-triplet gap of 1 are quite small. The diradical character calculated using the ab initio density matrix renormalization group (DMRG) of 1 is the largest among its isomers, which explains its lowest singlet-triplet gap.

View Article and Find Full Text PDF

We study absorption spectra and two photon absorption coefficient of expanded porphyrins (EPs) by the density matrix renormalization group (DMRG) technique. We employ the Pariser-Parr-Pople (PPP) Hamiltonian which includes long-range electron-electron interactions. We find that, in the 4n+2 EPs, there are two prominent low-lying one-photon excitations, while in 4n EPs, there is only one such excitation.

View Article and Find Full Text PDF