The authors and Editorial Office were made aware of an error in a figure within the original publication [...
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) and S1P receptors (S1PR) regulate many cellular processes, including lymphocyte migration and endothelial barrier function. As neutrophils are major mediators of inflammation, their transendothelial migration may be the target of therapeutic approaches to inflammatory conditions such as ischaemia-reperfusion injury (IRI). The aim of this project was to assess whether these therapeutic effects are mediated by S1P acting on neutrophils directly or indirectly through the endothelial cells.
View Article and Find Full Text PDFBackground: The association between interleukin-1β (IL-1β) concentrations during ex vivo lung perfusion (EVLP) with donor organ quality and post-lung transplant outcome has been demonstrated in several studies. The mechanism underlying IL-1β-mediated donor lung injury was investigated using a paired single-lung EVLP model.
Methods: Human lung pairs were dissected into individual lungs and perfused on identical separate EVLP circuits, with one lung from each pair receiving a bolus of IL-1β.
Introduction: We aimed to determine the expression of inflammatory cytokines in the tears of patients with unilateral total limbal stem cell deficiency (TLSCD) caused by chemical burns before and after autologous cultivated limbal epithelial stem cell transplantation (CLET).
Methods: Tear samples were collected from both eyes of 23 patients with unilateral TLSCD and 11 healthy controls, at fixed timepoints before and after CLET. Dissolved molecules were extracted from Schirmer's strips using a standardised method and analysed on an array plate of ten inflammatory cytokines (V-Plex Proinflammatory Panel 1 Human Kit, MSD).
Chemokine CXCL8 is a key facilitator of the human host immune response, mediating neutrophil migration, and activation at the site of infection and injury. The oxidative burst is an important effector mechanism which leads to the generation of reactive nitrogen species (RNS), including peroxynitrite. The current study was performed to determine the potential for nitration to alter the biological properties of CXCL8 and its detection in human disease.
View Article and Find Full Text PDFIn fibrotic diseases, myofibroblasts derive from a range of cell types including endothelial-to-mesenchymal transition (EndMT). Increasing evidence suggests that miRNAs are key regulators in biological processes but their profile is relatively understudied in EndMT. In human umbilical vein endothelial cells (HUVEC), EndMT was induced by treatment with TGFβ2 and IL1β.
View Article and Find Full Text PDFChemokine receptor CCR7 is implicated in the metastasis of breast cancer to the lymph nodes. Chemokine function is dependent upon their binding to both cell-surface heparan sulphate (HS) and to their specific receptors; thus, the role of HS in CCR7-mediated lymph node metastasis was investigated by creating a non-HS binding chemokine CCL21 (mut-CCL21). Mut-CCL21 (Δ103-134) induced leukocyte chemotaxis in diffusion gradients but did not stimulate trans-endothelial migration of PBMCs ( < 0.
View Article and Find Full Text PDFMyocardial infarction leads to a rapid innate immune response that is ultimately required for repair of damaged heart tissue. We therefore examined circulating monocyte dynamics immediately after reperfusion of the culprit coronary vessel in STEMI patients to determine whether this correlated with level of cardiac injury. A mouse model of cardiac ischemia/reperfusion injury was subsequently used to establish the degree of monocyte margination to the coronary vasculature that could potentially contribute to the drop in circulating monocytes.
View Article and Find Full Text PDFJ Heart Lung Transplant
January 2021
Despite the advancements in medical treatment, mechanical support, and stem cell therapy, heart transplantation remains the most effective treatment for selected patients with advanced heart failure. However, with an increase in heart failure prevalence worldwide, the gap between donor hearts and patients on the transplant waiting list keeps widening. Ex situ machine perfusion has played a key role in augmenting heart transplant activities in recent years by enabling the usage of donation after circulatory death hearts, allowing longer interval between procurement and implantation, and permitting the safe use of some extended-criteria donation after brainstem death hearts.
View Article and Find Full Text PDFThere has been increasing use of organs from extended criteria or donation after circulatory death donors to meet the demands of the transplant waiting list. Over the past decade, there has been considerable progress in technologies to preserve organs prior to transplantation to improve the function of these marginal organs. This has led to the development of normothermic machine perfusion, whereby an organ is perfused with warmed, oxygenated blood and nutrients to resume normal physiological function in an isolated ex-vivo platform.
View Article and Find Full Text PDFTransplant Direct
September 2020
Background: Flavin mononucleotide (FMN), released from damaged mitochondrial complex I during hypothermic liver perfusion, has been shown to be predictive of 90-day graft loss. Normothermic machine perfusion (NMP) and normothermic regional perfusion (NRP) are used for organ reconditioning and quality assessment before transplantation. This pilot study aimed to investigate the changes of FMN levels during normothermic reperfusion of kidneys, livers, and lungs and examine whether FMN could serve as a biomarker to predict posttransplant allograft quality.
View Article and Find Full Text PDFEx vivo normothermic machine perfusion (NMP) of donor kidneys prior to transplantation provides a platform for direct delivery of cellular therapeutics to optimize organ quality prior to transplantation. Multipotent Adult Progenitor Cells (MAPC ) possess potent immunomodulatory properties that could minimize ischemia reperfusion injury. We investigated the potential capability of MAPC cells in kidney NMP.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are short noncoding RNAs which each cause repression of many target genes. Previous work has demonstrated that therapeutic blockade of single miRNAs is possible. miR-24-3p and miR-145-5p are reported to have a detrimental role in ischemia-reperfusion injury.
View Article and Find Full Text PDFBackground: Failed myocardial reperfusion occurs in approximately 50% of patients with ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (PPCI). It manifests as microvascular obstruction (MVO) on cardiac magnetic resonance (CMR) imaging. Although prognostically important, MVO is not routinely screened for.
View Article and Find Full Text PDFLeucocyte recruitment is critical during many acute and chronic inflammatory diseases. Chemokines are key mediators of leucocyte recruitment during the inflammatory response, by signalling through specific chemokine G-protein-coupled receptors (GPCRs). In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic gradient.
View Article and Find Full Text PDFFibrosis is a universal finding in chronic allograft dysfunction, and it is characterized by an accumulation of extracellular matrix. The precise source of the myofibroblasts responsible for matrix deposition is not understood, and pharmacological strategies for prevention or treatment of fibrosis remain limited. One source of myofibroblasts in fibrosis is an endothelial-to-mesenchymal transition (EndMT), a process first described in heart development and involving endothelial cells undergoing a phenotypic change to become more like mesenchymal cells.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
May 2019
One of the main feature of chronic kidney disease is the development of renal fibrosis. Heparan Sulfate (HS) is involved in disease development by modifying the function of growth factors and cytokines and creating chemokine gradients. In this context, we aimed to understand the function of HS sulfation in renal fibrosis.
View Article and Find Full Text PDFUpon binding with the chemokine CXCL12, the chemokine receptor CXCR4 has been shown to promote breast cancer progression. This process, however, can be affected by the expression of the atypical chemokine receptor ACKR3. Given ACKR3's ability to form heterodimers with CXCR4, we investigated how dual expression of both receptors differed from their lone expression in terms of their signalling pathways.
View Article and Find Full Text PDFBackground: Cardiac-enriched micro ribonucleic acids (miRNAs) are released into the circulation following ST-elevation myocardial infarction (STEMI). Lack of standardized approaches for reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) data normalization and presence of RT-qPCR inhibitors (e.g.
View Article and Find Full Text PDFObjective: Gastroesophageal reflux is thought to be a risk factor for laryngotracheal stenosis. Bile acids are a component of gastric refluxate and have previously been implicated in the development of fibrosis in other airway subsites. There is clear evidence that bile acids reflux into the upper airway.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenase (IDO)-induced immunosuppression can be clinically beneficial for autoimmune diseases. Primary biliary cirrhosis (PBC) is characterized by autoimmune lesions of intrahepatic bile duct epithelial cells that may lead to irreversible cirrhosis or hepatocellular carcinoma. The present study assessed the expression and function of IDO in a cell culture model and in PBC patients.
View Article and Find Full Text PDFThe primary function of chemokines is to direct the migration of leukocytes to the site of injury during inflammation. The effects of chemokines are modulated by several means, including binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines released in response to injury.
View Article and Find Full Text PDFBackground: Extended criteria donor lungs deemed unsuitable for immediate transplantation can be reconditioned using ex vivo lung perfusion (EVLP). Objective identification of which donor lungs can be successfully reconditioned and will function well post-operatively has not been established. This study assessed the predictive value of markers of inflammation and tissue injury in donor lungs undergoing EVLP as part of the DEVELOP-UK study.
View Article and Find Full Text PDF