Publications by authors named "Simeng Wen"

Background: The majority of patients with prostate cancer (PCa) exhibit intrinsic resistance to immune checkpoint blockade (ICB) following radiotherapy (RT). This resistance is generally attributed to the limited antigen presentation of heterogeneous cells within tumors. Here, we aimed to isolate and characterize these diverse subgroups of tumor post-RT to understand the molecular mechanisms of their resistance to ICB.

View Article and Find Full Text PDF

Metabolic reprogramming and cellular senescence greatly contribute to cancer relapse and recurrence. In aging and treated prostate, persistent accumulating senescence-associated secretory phenotype (SASP) of cancer cells often limits the overall survival of patients. Novel strategic therapy with monoacylglycerol lipase (MGLL) upregulation that counters the cellular and docetaxel induced SASP might overcome this clinical challenge in prostate cancer (PCa).

View Article and Find Full Text PDF
Article Synopsis
  • Cardiovascular disease (CVD) is now the leading cause of death among prostate cancer (PCa) patients, particularly impacting those receiving androgen deprivation therapy (ADT), highlighting an urgent need to assess CVD risk in newly diagnosed PCa patients in China.
  • The study analyzed clinical data from 4,253 newly diagnosed PCa patients across 34 centers in China, finding that 27% had both PCa and CVD, with a notable percentage experiencing multiple cardiovascular conditions.
  • Results indicate a significant portion of patients were diagnosed at advanced stages of PCa, and those undergoing ADT were at a greater risk for CVD compared to those not receiving this treatment.
View Article and Find Full Text PDF

Purpose: The study aimed to investigate the diagnostic accuracy of prostate health index (PHI) and apparent diffusion coefficient (ADC) values in predicting prostate cancer (PCa) and construct a nomogram for the prediction of PCa and clinically significant PCa (CSPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) three lesions cohort.

Methods: This study prospectively enrolled 301 patients who underwent multiparametric magnetic resonance (mpMRI) and were scheduled for prostate biopsy. The receiver operating characteristic curve (ROC) was performed to estimate the diagnostic accuracy of each predictor.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of Yes-associated protein 1 (YAP) in prostate stem cells, focusing on its impact on prostate development and regeneration, which relies on the right balance of stem cell self-renewal and differentiation.
  • - Researchers used YAP-deficient mice to demonstrate that the absence of YAP leads to issues in prostate branching and epithelial differentiation, ultimately harming prostate development and regeneration.
  • - The analysis found that YAP influences the Notch and Hedgehog signaling pathways, with reduced YAP levels resulting in decreased self-renewal of prostate stem cells; adding Shh (a molecule involved in the Hedgehog pathway) slightly restored this ability.
View Article and Find Full Text PDF

Background: N7-methylguanosine (m7G) modification is, a more common epigenetic modification in addition to m6A modification, mainly found in mRNA capsids, mRNA interiors, transfer RNA (tRNA), pri-miRNA, and ribosomal RNA (rRNA). It has been found that m7G modifications play an important role in mRNA transcription, tRNA stability, rRNA processing maturation, and miRNA biosynthesis. However, the role of m7G modifications within mRNA and its "writer" methyltransferase 1(METTL1) in tumors, particularly prostate cancer (PCa), has not been revealed.

View Article and Find Full Text PDF

Background: The six-transmembrane epithelial antigen of the prostate 3 (STEAP3) is a metalloreductase, which is essential for iron uptake. Existing literature has shown that STEAP3 may perform an important role in the onset and progression of tumors. Nonetheless, a complete pan-cancer investigation of the prognostic significance and immune properties of STEAP3 is currently unavailable.

View Article and Find Full Text PDF

Prostate cancer metastasizes to the bone with the highest frequency and exhibits high resistance to Lu-prostate-specific membrane antigen (PSMA) radioligand therapy. Little is known about bone metastatic prostate cancer (mPCa) resistance to radiation. We filtered the metastatic eRNA using RNA-seq, MeRIP-seq, RT-qPCR and bioinformation.

View Article and Find Full Text PDF

Background: While immunotherapy has shown potent efficacy in clinical practices, patient selection to receive checkpoint blockade is still challenging in prostate cancer (PCa). LAT and ZAP70 functions in lymphocyte activation and plays a critical role in T cell receptor (TCR) signal transduction. However, PCa genomic and clinical data regarding the role of LAT and ZAP70 are limited.

View Article and Find Full Text PDF

Background: Teratomas are unusual tumors derived from multiple germ layers but they usually arise from all three germ layers. Knowledge of this disease is still very limited because of its low incidence. Retroperitoneal teratomas are extremely rare neoplasms, especially adrenal teratomas, which frequently found to be large, cystic or cyst-solid lesions.

View Article and Find Full Text PDF

Androgen receptor-positive prostate cancer (PCa) and estrogen receptor-positive luminal breast cancer (BCa) are generally less responsive to immunotherapy compared with certain tumor types such as melanoma. However, the underlying mechanisms are not fully elucidated. In this study, we found that FOXA1 overexpression inversely correlated with interferon (IFN) signature and antigen presentation gene expression in PCa and BCa patients.

View Article and Find Full Text PDF

Enhancer RNA (eRNA) bi-directionally expresses from enhancer region and sense eRNA regulates adjacent mRNA in cis and in trans. However, it has remained unclear whether antisense eRNAs in different direction are functional or merely a reflection of enhancer activation. Strand-specific, ribosome-minus RNA sequencing (RNA-seq) were performed in AR positive prostate cancer cells.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) is the most prevalent messenger RNA modification in mammalian cells. However, the disease relevant function of m6A on specific oncogenic long non-coding RNAs (ncRNAs) is not well understood.

Methods: We analyzed the m6A status using patients samples and bone metastatic PDXs.

View Article and Find Full Text PDF

Background: Cumulative evidence from several tumor studies, including bladder cancer, emphasizes the importance of the tumor microenvironment (TME) in tumorigenesis, development, and metastasis, which can be regulated by long non-coding RNAs (lncRNAs). This study aims to identify bladder cancer (BC) microenvironment-associated lncRNAs for their prognostic value predicting the survival of BC patients.

Methods: The data of BC patients regarding lncRNA expression and corresponding clinical characteristics were obtained from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most commonly diagnosed cancer among men in western countries. Androgen receptor (AR) signaling plays key roles in the development of PCa. Androgen deprivation therapy (ADT) remains the standard therapy for advanced PCa.

View Article and Find Full Text PDF

Next generation antiandrogens such as enzalutamide (Enz) are effective initially for the treatment of castration-resistant prostate cancer (CRPC). However, the disease often relapses and the underlying mechanisms remain elusive. By performing H3-lysine-27 acetylation (H3K27ac) ChIP-seq in Enz-resistant CRPC cells, we identified a group of super enhancers (SEs) that are abnormally activated in Enz-resistant CRPC cells and associated with enhanced transcription of a subset of tumor promoting genes such as CHPT1, which catalyzes phosphatidylcholine (PtdCho) synthesis and regulates choline metabolism.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) with neuroendocrine differentiation (NED) is a lethal disease for which effective therapies are urgently needed. The mechanism underlying development of CRPC with NED, however, remains largely uncharacterized. In this study, we explored and characterized the functional role of neurotensin (NTS) in cell line and animal models of CRPC with NED.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most common cancer and the 2nd leading cause of cancer-related deaths among men in the United States. Androgen-deprivation-therapy (ADT) with antiandrogens to target the androgens/androgen receptor (AR) signals remains the standard therapy for advanced PCa. However, most of the PCa patients who received ADT with antiandrogens, including the recently developed Enzalutamide (Enz) that might extend PCa patients survival an extra 4.

View Article and Find Full Text PDF

Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette-Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release.

View Article and Find Full Text PDF

Early studies suggested that prostate cancer (PCa) stem/progenitor (S/P) cells might play key roles to promote the tumor initiation and metastasis. Yet their linkage to the failure of androgen deprivation therapy (ADT), however, remains unclear. Here we demonstrated that the ADT with anti-androgens Casodex (also known as Bicalutamide) and Enzalutamide (also known as MDV3100), but not the newly identified AR degradation enhancer, ASC-J9(®), increased PCa S/P population, which might then lead to enhance the PCa cell invasion.

View Article and Find Full Text PDF

Fatty acid synthase (FASN) is the key enzyme for the control of fatty acid synthesis that contributes significantly to the prostate cancer (PCa) progression. It was reported that androgens were able to induce FASN expression in PCa, and addition of the anti-androgen Casodex might suppress the androgen-induced FASN expression. However, here we found androgen-deprivation-therapy (ADT) with anti-androgens Bicalutamide (Casodex) or Enzalutamide (MDV3100) had little effect to suppress FASN expression and FASN-mediated cell growth and invasion during the castration resistant stage when the androgen concentration is 1 nM DHT (dihydrotestosterone).

View Article and Find Full Text PDF

Recent studies have suggested that prostate cancer (PCa) is able to recruit bone marrow derived mesenchymal stem cells (BM-MSCs) to promote metastasis. The detailed mechanisms, especially the involvement of stromal cells, remain unclear. We found that the recruited BM-MSCs might be able to convert the normal fibroblasts to more cancer associated fibroblast (CAF)-like characteristics via alteration of secreted TGFβ-1.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancers in the world. Since androgen receptor (AR) signal plays key roles in the PCa progression, targeting androgens via the current androgen deprivation therapy (ADT) is the main therapeutic strategy for advanced PCa. However, most patients who receive ADT, including the second generation anti-androgens enzalutamide (also known as MDV3100) may finally develop the castration (or anti-androgen) resistance after 12-24 months treatment.

View Article and Find Full Text PDF

The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development.

View Article and Find Full Text PDF