We present a high-throughput (combinatorial) method to screen thin ceramic films as Li-ion conductors by mapping an optical effect of Li-ion conduction. The method, while qualitative, is fast and simple to implement, provides a planar (XY) map of Li-ion conductivity through different parts of the film. The effect, , is an optoelectrochemical one that relies on darkening of the FTO (F-doped tin oxide) substrate, onto which the investigated film is deposited.
View Article and Find Full Text PDFIn this work, we describe the formation of a reduced bandgap CeNiO phase, which, to our knowledge, has not been previously reported, and we show how it is utilized as an absorber layer in a photovoltaic cell. The CeNiO phase is prepared by a combinatorial materials science approach, where a library containing a continuous compositional spread of Ce NiO is formed by pulsed laser deposition (PLD); a method that has not been used in the past to form Ce-Ni-O materials. The library displays a reduced bandgap throughout, calculated to be 1.
View Article and Find Full Text PDFData mining tools have been known to be useful for analyzing large material data sets generated by high-throughput methods. Typically, the descriptors used for the analysis are structural descriptors, which can be difficult to obtain and to tune according to the results of the analysis. In this Research Article, we show the use of deposition process parameters as descriptors for analysis of a photovoltaics data set.
View Article and Find Full Text PDFWe have developed a two steps strategy for the parallel synthesis of highly diversified quinolin-ones. In the first step we have combined and improved different synthetic methods for generating quinolin-4-ones bearing four different substitutions at specific positions using round bottomed flasks. The synthesis was assessed for a large number of substituted quinolin-4-ones.
View Article and Find Full Text PDF