Publications by authors named "Simbulan-Rosenthal C"

The skin is the largest organ in the body and the only one to come into contact with solar UV radiation (UVR). UVA (320-400 nm) is a significant contributor to UV-related skin damage. The UVA spectrum makes up over 95% of solar-UV energy reaching the earth's surface causing the majority of the visible signs of skin photoaging.

View Article and Find Full Text PDF
Article Synopsis
  • Existing animal models for skin therapeutics are limited; pig models (considered most similar to human skin) are expensive and time-consuming, prompting the development of a new nude mouse model for testing treatments on xenografted porcine hypertrophic scar cells.
  • This novel approach involved creating dyschromic hypertrophic scars in pigs, isolating epidermal and dermal cells, and using these cells to create xenografts in nude mice, where treatments could be applied and assessed.
  • The study found that the dermis formed by pig-derived fibroblasts in the nude mice was structurally similar to that from pigs, and the epidermal cells cultured showed the potential for full stratification, vital for skin repair and therapeutic evaluation.
View Article and Find Full Text PDF

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133.

View Article and Find Full Text PDF

The targets of topical genotoxic agents are basal and stem cells of the skin. These cells may misrepair DNA lesions, resulting in deleterious mutations of tumor suppressors or oncogenes. However, the genotoxicity of many compounds has not as yet been determined and needs to be tested using a relevant skin model.

View Article and Find Full Text PDF

Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133's anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRAS and NRAS drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133.

View Article and Find Full Text PDF

Environmental chemical (EC) exposures and our interactions with them has significantly increased in the recent decades. Toxicity associated biological characterization of these chemicals is challenging and inefficient, even with available high-throughput technologies. In this report, we describe a novel computational method for characterizing toxicity, associated biological perturbations and disease outcome, called the Chemo-Phenotypic Based Toxicity Measurement (CPTM).

View Article and Find Full Text PDF

There are limited treatments for dyschromia in burn hypertrophic scars (HTSs). Initial work in Duroc pig models showed that regions of scar that are light or dark have equal numbers of melanocytes. This study aims to confirm melanocyte presence in regions of hypo- and hyper-pigmentation in an animal model and patient samples.

View Article and Find Full Text PDF

Wound healing requires well-coordinated events including hemostasis, inflammation, proliferation, and remodeling. Delays in any of these stages leads to chronic wounds, infections, and hypertrophic scarring. Burn wounds are particularly problematic, and may require intervention to ensure timely progression to reduce morbidity and mortality.

View Article and Find Full Text PDF

CD133, known as prominin1, is a penta-span transmembrane glycoprotein presumably a cancer stem cell marker for carcinomas, glioblastomas, and melanomas. We showed that CD133(+) 'melanoma-initiating cells' are associated with chemoresistance, contributing to poor patient outcome. The current study investigates the role(s) of CD133 in invasion and metastasis.

View Article and Find Full Text PDF

Burn injuries frequently result in hypertrophic scars (HTSs), specifically when excision and grafting are delayed due to limited resources or patient complications. In patient populations with dark baseline pigmentation, one symptom of HTS that often occurs is dyspigmentation. The mechanism behind dyspigmentation has not been explored, and, as such, prevention and treatment strategies for this morbidity are lacking.

View Article and Find Full Text PDF

FDA-approved kinase inhibitors are now used for melanoma, including combinations of the MEK inhibitor trametinib, and BRAF inhibitor dabrafenib for BRAFV600 mutations. NRAS-mutated cell lines are also sensitive to MEK inhibition , and NRAS-mutated tumors have also shown partial response to MEK inhibitors. However, melanoma still has high recurrence rates due to subpopulations, sometimes described as "melanoma initiating cells," resistant to treatment.

View Article and Find Full Text PDF

Hypertrophic scar (HTS) occurs frequently after burn injury. Treatments for some aspects of scar morbidity exist, however, dyspigmentation treatments are lacking due to limited knowledge about why scars display dyschromic phenotypes. Full thickness wounds were created on duroc pigs that healed to form dyschromic HTS.

View Article and Find Full Text PDF

Structure-based drug repositioning in addition to random chemical screening is now a viable route to rapid drug development. Proteochemometric computational methods coupled with kinase assays showed that mebendazole (MBZ) binds and inhibits kinases important in cancer, especially both BRAFWT and BRAFV600E. We find that MBZ synergizes with the MEK inhibitor trametinib to inhibit growth of BRAFWT-NRASQ61K melanoma cells in culture and in xenografts, and markedly decreased MEK and ERK phosphorylation.

View Article and Find Full Text PDF

The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc.

View Article and Find Full Text PDF

The increased threat of radiological terrorism and accidental nuclear exposures, together with increased usage of radiation-based medical procedures, has made necessary the development of minimally invasive methods for rapid identification of exposed individuals. Genetically predisposed radiosensitive individuals comprise a significant number of the population and require specialized attention and treatments after such events. Metabolomics, the assessment of the collective small molecule content in a given biofluid or tissue, has proven effective in the rapid identification of radiation biomarkers and metabolic perturbations.

View Article and Find Full Text PDF

Inhibitor of differentiation/DNA-binding (Id) proteins are helix-loop-helix (HLH) transcription factors. The Id protein family (Id1-Id4) mediates tissue homeostasis by regulating cellular processes including differentiation, proliferation, and apoptosis. Ids typically function as dominant negative HLH proteins, which bind other HLH proteins and sequester them away from DNA promoter regions.

View Article and Find Full Text PDF

TGF-β and the inhibitors of differentiation (Id) are linked. Smad7 and other TGF-β inhibitors can potently suppress melanomagenesis; however, little work examining Ids has been reported in melanoma, particularly for Id4. Here, we report that Id4, but not Id2 or Id3 expression, surprisingly, activated robust melanin production in xenografts of previously amelanotic (lacking pigment) 1205Lu/Smad7 (S7) cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of inhibitor of differentiation (Id) proteins in the development of melanoma, suggesting they may be crucial in this process.
  • Increased expression of Id2, Id3, and Id4 in specific melanoma cells indicates their involvement in circumventing tumor suppression by Smad7, which inhibits TGF-β signaling.
  • The findings reveal that Id proteins help promote tumor growth and are linked to deregulating genes that affect cancer progression, highlighting their potential as significant factors in melanoma development.
View Article and Find Full Text PDF

Chemotherapeutic refractoriness of advanced cutaneous melanoma may be linked with melanoma-initiating cells, also known as melanoma stem cells. This study aimed to determine relative risk of clonal dominance of the CD133+ phenotype in tissues from melanoma patients with different clinical outcomes that could be applied to early diagnosis, prognosis or disease monitoring. Significant overexpression of CD133 (p<0.

View Article and Find Full Text PDF
Article Synopsis
  • PARP-1 is a key enzyme involved in DNA repair and various nuclear processes, influencing the function of proteins through poly(ADP-ribosyl)ation (PARylation).
  • PARylation affects the activities of DNA replication enzymes and changes nucleosomal structure to facilitate access for repair and transcription factors.
  • The text also outlines biochemical techniques for studying PARylated DNA complexes and emphasizes the importance of identifying new complexes to understand PARP-1's diverse roles in cellular mechanisms.
View Article and Find Full Text PDF

The list of transforming growth factor-beta (TGF-β)-related proteins in non-canonical TGF-β signaling is growing. Examples include receptor-Smads directing micro-RNA processing and inhibitory-Smads, e.g.

View Article and Find Full Text PDF

Sulfur mustard (SM [bis-(2-chloroethyl) sulfide]) is a chemical warfare agent that causes skin blisters presumably due to DNA alkylation and cross-links. We recently showed that SM also induces apoptotic death in cultured normal human bronchial/tracheal epithelial (NHBE) cells and small airway epithelial cells (SAEC) in vitro. In this process, caspases-8 and -3, but not caspase-9, were strongly activated; this suggests a death receptor pathway for apoptosis.

View Article and Find Full Text PDF

Id2 is a member of the helix-loop-helix (HLH) family of transcription regulators known to antagonize basic HLH transcription factors and proteins of the retinoblastoma tumor suppressor family and is implicated in the regulation of proliferation, differentiation, apoptosis and carcinogenesis. To investigate its proposed role in tumorigenesis, Id2 or deletion mutants were re-expressed in Id2(-/-) dermal fibroblasts. Ectopic expression of Id2 or mutants containing the central HLH domain increased S-phase cells, cell proliferation in low and normal serum and induced tumorigenesis when grafted or subcutaneously injected into athymic mice.

View Article and Find Full Text PDF

Id3 belongs to the inhibitor of differentiation family of helix-loop-helix transcription factors, important in proliferation, differentiation and apoptosis. We showed that Id3, but not Id2 or Id1, mediates the UVB-sensitization of immortalized keratinocytes by inducing caspase 9-dependent apoptosis. In this study, quantitative PCR analysis revealed a time-dependent increase in Id3 mRNA induced by UVB, dependent on reactive oxygen species.

View Article and Find Full Text PDF