Publications by authors named "Siman Gao"

Although the increase in the number of identified posttranslational modifications (PTMs) has substantially improved our knowledge about substrate site specificity of single PTMs, the fact that different types of PTMs can crosstalk and act in concert to exert important regulatory mechanisms for protein function has not gained much attention. Here, we show that protein kinase Cδ (PKCδ) is SUMOylated at lysine 473 in its C-terminal catalytic domain, and the SUMOylation increases PKCδ stability by repressing its ubiquitination. In addition, we uncover a functional interplay between the phosphorylation and SUMOylation of PKCδ, which can strengthen each other through recruiting SUMO E2/E3 ligases and the PKCδ kinase, respectively, to the PKCδ complexes.

View Article and Find Full Text PDF

Cigarette smoke is a major preventable risk factor of ischemic stroke. Cigarette smoke induces a significant increase in circulating leukocytes. However, it remains unclear to what extent and by what mechanisms smoke priming influences stroke severity.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is a severe type of stroke without effective treatment. The coagulation cascade is activated after blood flows into the brain parenchyma. The conversion of fibrinogen to fibrin is an essential step of coagulation processes, but its influences on neuroinflammation and long-term outcome after ICH have not been adequately studied.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) results in severe neurological impairments without effective treatments. Inflammation appears to be an important contributor to key pathogenic events such as secondary brain injury following TBI and therefore serves as a promising target for novel therapies. We have recently demonstrated the ability of a molecular construct comprised of the human leukocyte antigen (HLA)-DRα1 domain linked covalently to mouse (m)MOG-35-55 peptide (DRα1-MOG-35-55 construct) to reduce CNS inflammation and tissue injury in animal models of multiple sclerosis and ischemic stroke.

View Article and Find Full Text PDF