Publications by authors named "Sima Rahimian"

Additive manufacturing (AM) or 3D printing is enabling new directions in product design. The adoption of AM in various industrial sectors has led to major transformations. Similarly, AM presents new opportunities in the field of drug delivery, opening new avenues for improved patient care.

View Article and Find Full Text PDF

Induction of apoptosis in tumor cells specifically within the complex tumor microenvironment is highly desirable to kill them efficiently and to enhance the effects of chemotherapy. Second mitochondria-derived activator of caspase (Smac) is a key pro-apoptotic pathway which can be activated with a Smac mimetic peptide. However, in vivo application of peptides is hampered by several limitations such as poor pharmacokinetics, rapid elimination, enzymatic degradation, and insufficient intracellular delivery.

View Article and Find Full Text PDF

Immunotherapy of cancer is a promising therapeutic approach which aims to eliminate malignancies by inducing or enhancing an immune response against the tumor. Immunotherapy, however, faces several challenges such as local immunosuppression in the tumor area leading to immunological tolerance. To overcome these challenges, particulate formulations such as nano- and microparticles containing immunotherapeutics have been developed to increase therapeutic efficacy and reduce toxicity of immunotherapy.

View Article and Find Full Text PDF

This study investigated the feasibility of the use of polymeric microparticles for sustained and local delivery of immunomodulatory antibodies in immunotherapy of cancer. Local delivery of potent immunomodulatory antibodies avoids unwanted systemic side effects while retaining their anti-tumor effects. Microparticles based on poly(lactic-co-hydroxymethyl-glycolic acid) (pLHMGA) and loaded with two distinct types of immunomodulatory antibodies (CTLA-4 antibody blocking inhibitory receptors on T cells or CD40 agonistic antibody stimulating dendritic cells) were prepared by double emulsion solvent evaporation technique.

View Article and Find Full Text PDF

The aim of the current study was to develop a cancer vaccine formulation for treatment of human papillomavirus (HPV)-induced malignancies. Synthetic long peptides (SLPs) derived from HPV16 E6 and E7 oncoproteins have been used for therapeutic vaccination in clinical trials with promising results. In preclinical and clinical studies adjuvants based on mineral oils (such as incomplete Freund's adjuvant (IFA) and Montanide) are used to create a sustained release depot at the injection site.

View Article and Find Full Text PDF

Particulate antigen delivery systems aimed at the induction of antigen-specific T cells form a promising approach in immunotherapy to replace pharmacokinetically unfavorable soluble antigen formulations. In this study, we developed a delivery system using the model protein antigen ovalbumin (OVA) encapsulated in nanoparticles based on the hydrophilic polyester poly(lactide-co-hydroxymethylglycolic acid) (pLHMGA). Spherical nanoparticles with size 300-400 nm were prepared and characterized and showed a strong ability to deliver antigen to dendritic cells for cross-presentation to antigen-specific T cells in vitro.

View Article and Find Full Text PDF

Purpose: The aim of this study was the development of poly(D,L-lactide-co-glycolide) (PLGA) microspheres with controlled porosity, to obtain microspheres that afford continuous release of a macromolecular model compound (blue dextran).

Methods: PLGA microspheres with a size of around 40 μm and narrow size distribution (span value of 0.3) were prepared with a double emulsion membrane emulsification method.

View Article and Find Full Text PDF

Hydrogels can provide a suitable environment for tissue formation by embedded cells, which makes them suitable for applications in regenerative medicine. However, hydrogels possess only limited mechanical strength, and must therefore be reinforced for applications in load-bearing conditions. In most approaches the reinforcing component and the hydrogel network have poor interactions and the synergetic effect of both materials on the mechanical properties is not effective.

View Article and Find Full Text PDF