Glioblastoma multiforme (GBM) is one of the deadliest cancers. Temozolomide (TMZ) is the most common chemotherapy used for GBM patients. Recently, combination chemotherapy strategies have had more effective antitumor effects and focus on slowing down the development of chemotherapy resistance.
View Article and Find Full Text PDFWe investigated the molecular mechanism of apoptosis induced by novel jatropha-6(17),11E-diene class derivatives, compounds A, B, and C that were extracted from Euphorbia osyridea Boiss, in the ovarian cancer cell lines Caov-4 and OVCAR-3. The OVCAR-3 and Caov-4 cell lines were treated with different concentrations of these compounds. Cytotoxicity was evaluated using MTT, clonogenic survival assay, and flow cytometry assays.
View Article and Find Full Text PDFA2b adenosine receptor (A2bAR) acts as a potent regulator of cell growth in various cell lines. The present study was designed to understand the controlling mechanism of A2bAR agonist (NECA)-induced apoptosis in ovarian cancer cells. Real-time PCR and western blotting assays were used to evaluate the gene and protein expression profiles of A2bAR, respectively.
View Article and Find Full Text PDFInduction of apoptosis in cancer cells can be a promising treatment method in cancer therapy. Naturally derived products had drawn growing attention as agent in cancer therapy. The main target of anticancer drugs may be distinct, but eventually, they lead to identical cell death pathway, which is apoptosis.
View Article and Find Full Text PDFA3 adenosine receptor agonist (IB-MECA) has been shown to play important roles in cell proliferation and apoptosis in a variety of cancer cell lines. The present study was designed to understand the mechanism underlying IB-MECA-induced apoptosis in human ovarian cancer cell lines. The messenger RNA (mRNA) and protein expression levels of A3 adenosine receptor were detected in OVCAR-3 and Caov-4 ovarian cancer cells.
View Article and Find Full Text PDF