We all possess a mental library of schemas that specify how different types of events unfold. How are these schemas acquired? A key challenge is that learning a new schema can catastrophically interfere with old knowledge. One solution to this dilemma is to use interleaved training to learn a single representation that accommodates all schemas.
View Article and Find Full Text PDFMemory, one of the hallmarks of human cognition, can be modified when humans voluntarily modulate neural population activity using neurofeedback. However, it is currently unknown whether neurofeedback can influence the integration of memories, and whether memory is facilitated or impaired after such neural perturbation. In this study, participants memorized objects while we provided them with abstract neurofeedback based on their brain activity patterns in the ventral visual stream.
View Article and Find Full Text PDFUnlabelled: Narratives may provide a general context, unrestricted by space and time, which can be used to organize episodic memories into networks of related events. However, it is not clear how narrative contexts are represented in the brain. Here we test the novel hypothesis that the formation of narrative-based contextual representations in humans relies on the same hippocampal mechanisms that enable formation of spatiotemporal contexts in rodents.
View Article and Find Full Text PDFMemories, similar to the internal representation of space, can be recalled at different resolutions ranging from detailed events to more comprehensive, multi-event narratives. Single-cell recordings in rodents have suggested that different spatial scales are represented as a gradient along the hippocampal axis. We found that a similar organization holds for human episodic memory: memory representations systematically vary in scale along the hippocampal long axis, which may enable the formation of mnemonic hierarchies.
View Article and Find Full Text PDF