Background: Pancreatic ductal adenocarcinoma (PDAC) is characterized by an important heterogeneity, reflected by different clinical outcomes and chemoresistance. During carcinogenesis, tumor cells display aberrant glycosylated structures, synthetized by deregulated glycosyltransferases, supporting the tumor progression. In this study, we aimed to determine whether PDAC could be stratified through their glycosyltransferase expression profiles better than the current binary classification (basal-like and classical) in order to improve detection of patients with poor prognosis.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a fatal disease with rising incidence and a remarkable resistance to current therapies. The reasons for this therapeutic failure include the tumor's extensive infiltration by immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). By using light sheet fluorescent microscopy, we identified here direct interactions between these major immunoregulatory cells in PDAC.
View Article and Find Full Text PDFThe dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is mainly due to its rapidly acquired resistance to all conventional treatments. Despite drug-specific mechanisms of resistance, none explains how these cells resist the stress induced by any kind of anticancer treatment. Activation of stress-response pathways relies on the post-translational modifications (PTMs) of involved proteins.
View Article and Find Full Text PDFThe microRNA-200 (miR-200) family is frequently down-regulated in tumors, including pancreatic adenocarcinomas (PDACs). In this study we have examined the mechanisms involved in the loss of miR-200s in tumoral pancreatic cells. Whereas miR-200 gene promoters appear methylated in mature miR-200 deficient cell lines, miR-200 precursors are detected in nuclear but not cytoplasmic compartment of these cells, indicating that promoter hypermethylation is not sufficient to explain the deficit of mature miR-200s.
View Article and Find Full Text PDFPancreatic adenocarcinoma (PAC) has a poor prognosis. One treatment approach, investigated here, is to reinforce antitumor immunity. Dendritic cells (DCs) are essential for the development and regulation of adaptive host immune responses against tumors.
View Article and Find Full Text PDFPancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases.
View Article and Find Full Text PDFBackground And Aims: Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD.
View Article and Find Full Text PDFPancreatic adenocarcinoma (PDAC) is a dismal disease. The lack of specific symptoms still leads to a delay in diagnosis followed by death within months for most patients. Exon 11 of the bile salt-dependent lipase (BSDL) gene encoding variable number of tandem repeated (VNTR) sequences has been involved in pancreatic pathologies.
View Article and Find Full Text PDFPancreatic cancer (PC) is a devastating disease progressing asymptomatically until death within months after diagnosis. Defining at-risk populations should promote its earlier diagnosis and hence also avoid its development. Considering the known involvement in pancreatic disease of exon 11 of the bile salt-dependent lipase (BSDL) gene that encodes variable number of tandem repeat (VNTR) sequences, we hypothesized upon the existence of a genetic link between predisposition to PC and mutations in VNTR loci.
View Article and Find Full Text PDFOncofetal fucose-rich glycovariants of the pathological bile salt-dependent lipase (pBSDL) appear during human pancreatic oncogenesis and are detected by themonoclonal antibody J28 (mAbJ28). We aimed to identify murine counterparts onpancreatic ductal adenocarcinoma (PDAC) cells and tissue and investigate the potential of dendritic cells (DC) loaded with this unique pancreatic tumor antigen to promote immunotherapy in preclinical trials. Pathological BSDLs purified from pancreatic juices of patients with PDAC were cleaved to generate glycosylated C-terminal moieties (C-ter) containing mAbJ28-reactive glycoepitopes.
View Article and Find Full Text PDFBackground: With the emergence of biotherapies, accurate diagnosis in early arthritis is needed. At this time, there is no biological marker of psoriatic arthritis.
Objective: To test whether antinuclear antibodies (ANA) can be used as a diagnostic tool in psoriatic arthritis (PsA), we evaluated the prevalence of ANA in biologic-naïve PsA patients and in healthy blood donors.
Ductal adenocarcinoma of the pancreas is ranking 4 for patient' death from malignant disease in Western countries, with no satisfactory treatment. We re-examined more precisely the histone deacetylases (HDAC) and Sirtuin (SIRT) gene expression patterns in pancreatic cancer with more pancreatic tumors and normal tissues. We also examined the possible relationship between HDAC gene expression levels and long term disease outcome.
View Article and Find Full Text PDFExpression of organic anion transporting polypeptides (OATP) transporters can be modified with potential incidence in cancers, yet they have not been considered in melanoma. Here, we demonstrate transcriptional and protein expression of OATP members in human melanoma cell lines with sodium-independent organic anion uptake activity. Importantly, uptake of different organic anions over 24 h led to a common resistance signal to apoptotic cell death, induced further by cisplatin in 24 h.
View Article and Find Full Text PDFExosomes are of increasing interest as alternative mode of cell-to-cell communication. We previously reported that exosomes secreted by human SOJ-6 pancreatic tumor cells induce (glyco)protein ligand-independent cell death and inhibit Notch-1 pathway, this latter being particularly active during carcinogenesis and in cancer stem cells. Therefore, we asked whether exosomal lipids were key-elements for cell death and hypothesized that cholesterol-rich membrane microdomains were privileged sites of exosome interactions with tumor cells.
View Article and Find Full Text PDFAberrant glycosylation or overexpression of cell-surface glycosylated tumor-associated Ags (TAA) distinguish neoplastic from normal cells. Interactions of TAA MUC1 and HER2/neu with dendritic cells (DC) preclude efficient processing, which impairs immune responses. It is thus important to define the mechanisms of interactions between DC and glycosylated TAA and their trafficking and processing for further T cell activation.
View Article and Find Full Text PDFWe have shown that the 16D10 antigen located on the mucin-like COOH-terminal domain of the feto-acinar pancreatic protein (FAPP) is expressed at the surface of human pancreatic tumor cell lines such as SOJ-6 cell line. Furthermore, an in vivo study indicates that targeting this cell-membrane glycopeptide by the use of the monoclonal antibody (mAb) 16D10 inhibits the growth of SOJ-6 xenografts in nude mice. To validate the potential use of the mAb16D10 in immune therapy, this study examined the expression of 16D10 antigens at the surface of human pancreatic adenocarcinomas versus control tissues.
View Article and Find Full Text PDFIn human pancreatic adenocarcinoma, alterations of glycosylation processes leads to the expression of tumor-associated carbohydrate antigens, representing potential targets for cancer immunotherapy. Among these pancreatic tumor-associated carbohydrate antigens, the J28 glycotope located within the O-glycosylated mucin-like C-terminal domain of the fetoacinar pancreatic protein (FAPP) and expressed at the surface of human tumoral tissues, can be a good target for anticancer therapeutic vaccines. However, the oncodevelopmental self character of the J28 glycotope associated with the low immunogenicity of tumor-associated carbohydrate antigens may be a major obstacle to effective anti-tumor vaccine therapy.
View Article and Find Full Text PDFBile salt-dependent lipase (BSDL), a 110 kDa glycoprotein secreted by the pancreatic acinar cells, participates in the duodenal hydrolysis of dietary lipid esters. Recent in vitro and in vivo studies demonstrated that the BSDL reaches the blood via a transcytosis motion through enterocytes, suggesting that this enzyme may play a role in vascular biology. Once in the blood, BSDL should be eliminated.
View Article and Find Full Text PDFFeto-acinar pancreatic protein (FAPP) characterized by mAbJ28 reactivity is a specific component associated with ontogenesis and behaves as an oncodevelopment-associated antigen. We attempted to determine whether pancreatic tumoral SOJ-6 cells are expressed at their surface FAPP antigens and to examine if specific antibodies directed against these FAPP epitopes could decrease the growth of pancreatic tumors in a mice model. For this purpose, we used specific antibodies against either the whole FAPP, the O-glycosylated C-terminal domain, or the N-terminal domain of the protein.
View Article and Find Full Text PDFWe have recently shown that the pancreatic bile salt-dependent lipase (BSDL) can be taken up by intestinal cells and transported to the blood circulation. This mechanism likely involves (specific) receptor(s) able to bind BSDL and located at the apical intestinal cell membrane. In this study, using Int407 human intestinal cells cultured to form a tight epithelium, we attempted to characterize (the) BSDL receptor(s).
View Article and Find Full Text PDFContracept Fertil Sex
September 1997
Ejaculates from 22 seropositive males were collected at various times 1 to 11 ejaculates for each in one year period of time. After fractionation, no virus is detected in mobile and living spermatozoa. Moreover, HIV is not always found in all ejaculates from the same patient.
View Article and Find Full Text PDFThe aim of the study was to investigate the presence and the localization of HIV in human ejaculate and its different components. Sixty-three ejaculates from 19 HIV-positive patients have been studied. By using cellular as well as molecular biology methods, we never detected HIV in living and mobile spermatozoa although we sometime found the virus in seminal liquid and in nuclear fractions.
View Article and Find Full Text PDFThymus humoral factor gamma-2 (THF gamma 2), an immunomodulatory factor, was previously shown to exert a regulatory effect upon human haematopoietic development. In the present study, we were primarily interested in determining whether THF gamma 2 has an immunorestorative effect after HIV infection. Although no inhibition of viral production by T-cluster-forming cells and their mature progeny was observed, this thymus-derived compound prevented the dramatic decrease in CD4+ cells observed in cultures of immature T cells from normal bone marrow infected with HIV 1.
View Article and Find Full Text PDF