Publications by authors named "Silviya Petrova Zustiak"

We are excited to present the Special Issue, "Feature Reviews in Pharmaceutical Technology", aiming to highlight exciting developments in pharmaceutical technologies [...

View Article and Find Full Text PDF
Article Synopsis
  • Connective tissue models derived from cell monolayers are valuable for drug screening, wound healing, and regenerative engineering, but they struggle to assemble and maintain fibrillar collagen like in the body.
  • The use of macromolecular crowding (MMC) has proven effective in enhancing fibrillar collagen assembly and accumulation in cell cultures.
  • This study combined carrageenan hydrogel to release soluble macromolecules and act as a confinement barrier, which improved collagen accumulation in human MG-63 bone cells without affecting cell viability.
View Article and Find Full Text PDF

Hydrogels are widely used for therapeutic delivery applications due to their biocompatibility, biodegradability, and ability to control release kinetics by tuning swelling and mechanical properties. However, their clinical utility is hampered by unfavorable pharmacokinetic properties, including high initial burst release and difficulty in achieving prolonged release, especially for small molecules (<500 Da). The incorporation of nanomaterials within hydrogels has emerged as viable option as a method to trap therapeutics within the hydrogel and sustain release kinetics.

View Article and Find Full Text PDF

Two-dimensional nanosilicate particles (NS) have shown promise for the prolonged release of small-molecule therapeutics while minimizing burst release. When incorporated in a hydrogel, the high surface area and charge of NS enable electrostatic adsorption and/or intercalation of therapeutics, providing a lever to localize and control release. However, little is known about the physio-chemical interplay between the hydrogel, NS, and encapsulated small molecules.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with median patient survival of 12-15 months even after treatment. To facilitate basic research as well as treatment development, bioengineered GBM models that adequately recapitulate aspects of the in vivo tumor microenvironment are greatly needed. Multicellular spheroids are a well-accepted model in tumor biology as well as drug screening because they recapitulate many of the solid tumor characteristics, such as hypoxic core and cell-cell communication.

View Article and Find Full Text PDF

Nanocomposite hydrogels containing two-dimensional nanosilicates (NS) have emerged as a new technology for the prolonged delivery of biopharmaceuticals. However, little is known about the physical-chemical properties governing the interaction between NS and proteins and the release profiles of NS-protein complexes in comparison to traditional poly(ethylene glycol) (PEG) hydrogel technologies. To fill this gap in knowledge, we fabricated a nanocomposite hydrogel composed of PEG and laponite and identified simple but effective experimental conditions to obtain sustained protein release, up to 23 times slower as compared to traditional PEG hydrogels, as determined by bulk release experiments and fluorescence correlation spectroscopy.

View Article and Find Full Text PDF

Platelet-rich plasma (PRP) is an autologous blood product that contains a variety of growth factors (GFs) that are released upon platelet activation. Despite some therapeutic potential of PRP in vitro, in vivo data are not convincing. Bolus injection of PRP is cleared rapidly from the body diminishing its therapeutic efficacy.

View Article and Find Full Text PDF

Predicting release from degradable hydrogels is challenging but highly valuable in a multitude of applications such as drug delivery and tissue engineering. In this study, we developed a simple mathematical and computational model that accounts for time-varying diffusivity and geometry to predict solute release profiles from degradable hydrogels. Our approach was to use time snapshots of diffusivity and hydrogel geometry data measured experimentally as inputs to a computational model which predicts release profile.

View Article and Find Full Text PDF

Macroporous cell-laden hydrogels have recently gained recognition for a wide range of biomedical and bioengineering applications. There are various approaches to create porosity in hydrogels, including lyophilization or foam formation. However, many do not allow a precise control over pore size or are not compatible with in situ cell encapsulation.

View Article and Find Full Text PDF

Owing to their exceptional physical, chemical, and mechanical properties, carbon nanotubes (CNTs) have been extensively studied for their effect on cellular behaviors. However, little is known about the process by which cells attach and spread on CNTs and the process for cell attachment and spreading on individual single-walled CNTs has not been studied. Cell adhesion and spreading is essential for cell communication and regulation and the mechanical interaction between cells and the underlying substrate can influence and control cell behavior and function.

View Article and Find Full Text PDF

Objective: The objective of this work was to test the synergistic effects of substrate stiffness, electro-conductivity, composition and electrical stimulation on the morphology, alignment and directional neurite outgrowth of neuron-like PC12 cells. The use of exogenous electrical stimulation has emerged as a promising new intervention to promote neural regeneration following injury. For critical gap size nerve injuries, a permissive biomaterial coupled to electrical stimulation may be needed to provide guidance and support for neurite outgrowth.

View Article and Find Full Text PDF

Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP) dishes, which are flat, 2-dimensional (2D) and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments.

View Article and Find Full Text PDF

In the continuous search for better tissue engineering scaffolds it has become increasingly clear that the substrate properties dramatically affect cell responses. Here we compared cells from a physiologically stiff tissue, melanoma, to cells isolated from a physiologically soft tissue, brain. We measured the cell line responses to laminin immobilized onto glass or polyacrylamide hydrogels tuned to have a Young's modulus ranging from 1 to 390 kPa.

View Article and Find Full Text PDF

Microencapsulation of cells is beneficial for various biomedical applications, such as tissue regeneration and cell delivery. While a variety of techniques can be used to produce microspheres, electrohydrodynamic spraying (EHS) has shown promising results for the fabrication of cell-laden hydrogel microspheres in a wide range of sizes and in a relatively high-throughput manner. Here we describe an EHS technique for the fabrication of cell-laden polyethylene glycol (PEG) microspheres.

View Article and Find Full Text PDF

An injection of hydrogel-encapsulated islets that controls blood glucose levels over long term would provide a much needed alternative treatment for type 1 diabetes mellitus (T1DM). To this end, we tested the feasibility of using an injectable polyethylene glycol (PEG) hydrogel as a scaffold for islet encapsulation. Encapsulated islets cultured for 6 days showed excellent cell viability and released insulin with higher basal and stimulated insulin secretion than control islets.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a physically and psychologically debilitating condition that mainly affects young, healthy males who are at the peak of their personal and professional development. SCI damages axons and disrupts myelination, which interrupts sensory and motor neuronal function. Current treatments are mostly palliative, aimed at reducing further damage and pain, but do not provide a cure.

View Article and Find Full Text PDF

Carbon nanotube (CNT)-hydrogel nanocomposites are beneficial for various biomedical applications, such as nerve regeneration, tissue engineering, sensing, or implant coatings. Still, there are impediments to developing nanocomposites, including attaining a homogeneous CNT-polymer dispersion or patterning CNTs on hydrogels. While few approaches have been reported for patterning CNTs on polymeric substrates, these methods include high temperature, high vacuum or utilize a sacrificial layer and, hence, are incompatible with hydrogels as they lead to irreversible collapse in hydrogel structure.

View Article and Find Full Text PDF

The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning.

View Article and Find Full Text PDF

There is an immediate need to develop highly predictive in vitro cell-based assays that provide reliable information on cancer drug efficacy and toxicity. Development of biomaterial-based three-dimensional (3D) cell culture models as drug screening platforms has recently gained much scientific interest as 3D cultures of cancer cells have been shown to more adequately mimic the in vivo tumor conditions. Moreover, it has been recognized that the biophysical and biochemical properties of the 3D microenvironment can play key roles in regulating various cancer cell fates, including their response to chemicals.

View Article and Find Full Text PDF

Since the birth of tissue engineering, it has been redefined to include not only the development of tissues for clinical use, but also in vitro models for the study of tissue physiology and pathology. Great strides have been accomplished in the design of in vitro tissue models, yet one area in which they are underrepresented, but where they can have an immediate impact, is the development of platforms for drug screening. By providing more in vivo-like cell environments, such models could address the growing concerns about drug failures due to lack of efficacy or unexpected side effects.

View Article and Find Full Text PDF