Publications by authors named "Silvio Notari"

It is increasingly evident that the association of glycans with the prion protein (PrP), a major post-translational modification, significantly impacts the pathogenesis of prion diseases. A recent bioassay study has provided evidence that the presence of PrP glycans decreases spongiform degeneration and disease-related PrP (PrPD) deposition in a murine model. We challenged (PRNPN181Q/197Q) transgenic (Tg) mice expressing glycan-free human PrP (TgGlyc-), with isolates from sporadic Creutzfeldt-Jakob disease subtype MM2 (sCJDMM2), sporadic fatal insomnia and familial fatal insomnia, three human prion diseases that are distinct but share histotypic and PrPD features.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers wanted to find out if prions, which are harmful proteins, are in the urine of people with a disease called sporadic Creutzfeldt-Jakob disease (sCJD).
  • They tested urine samples from sCJD patients and compared them to samples from healthy people and others with different brain diseases.
  • The study found that 36% of sCJD patients had prions in their urine, meaning there could be a risk of spreading the disease between people, and this test could help detect sCJD without needing a complicated procedure.
View Article and Find Full Text PDF

One of remarkable features of sporadic Creutzfeldt-Jakob disease (sCJD) is the great phenotypic variability. Understanding the molecular basis of this variability has important implications for the development of therapeutic approaches. It is well established that, in many cases, phenotypic heterogeneity of sCJD is under control of two determinants: the genotype at the methionine (M)/valine (V) polymorphic codon 129 of the human prion protein gene and the type, 1 or 2, of the pathogenic and disease-related form of the prion protein, PrP.

View Article and Find Full Text PDF

Prion diseases are transmissible neurological disorders associated with the presence of abnormal, disease-related prion protein (PrP). The detection of PrP in the brain is the only definitive diagnostic evidence of prion disease and its identification in body fluids and peripheral tissues are valuable for pre-mortem diagnosis. Protein misfolding cyclic amplification (PMCA) is a technique able to detect minute amount of PrP and is based on the conversion of normal or cellular PrP (PrP) to newly formed PrP, sustained by a self-templating mechanism.

View Article and Find Full Text PDF

Despite their phenotypic heterogeneity, most human prion diseases belong to two broadly defined groups: Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker disease (GSS). While the structural characteristics of the disease-related proteinase K-resistant prion protein (resPrP) associated with the CJD group are fairly well established, many features of GSS-associated resPrP are unclear. Electrophoretic profiles of resPrP associated with GSS variants typically show 6-8 kDa bands corresponding to the internal PrP fragments as well as a variable number of higher molecular weight bands, the molecular nature of which has not been investigated.

View Article and Find Full Text PDF

The presence of abnormal, disease-related prion protein (PrP) has recently been demonstrated by protein misfolding cyclic amplification (PMCA) in urine of patients affected with variant Creutzfeldt-Jakob disease (vCJD), a prion disease typically acquired from consumption of prion contaminated bovine meat. The complexity and multistage process of urine excretion along with the obligatory use of PMCA raise the issue of whether strain characteristics of the PrP present in vCJD brains, such as infectivity and phenotype determination, are maintained in urine excreted PrP and following amplification by PMCA. We inoculated transgenic mice expressing normal human PrP with amplified urine and brain homogenate achieving the same 100% attack rate, similar incubation periods (in both cases extremely long) and histopathological features as for type and severity of the lesions.

View Article and Find Full Text PDF

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive traumatic brain injury (TBI). CTE is generally found in athletes participating in contact sports and military personnel exposed to explosive blasts but can also affect civilians. Clinically and pathologically, CTE overlaps with post-traumatic stress disorder (PTSD), a term mostly used in a clinical context.

View Article and Find Full Text PDF
Article Synopsis
  • - Variably protease-sensitive prionopathy (VPSPr) is a newly identified sporadic prion disease in humans, characterized by a unique prion protein with five fragments similar to another disease known as Gerstmann-Sträussler-Scheinker disease.
  • - In experiments, while VPSPr could be transmitted to human-like prion protein mice, the results were inconsistent; however, using bank voles showed successful transmission with complete attack rates ranging from 5%-35% in the first passage and 100% in the second, with shorter survival times.
  • - Three distinct phenotypes of the disease were observed in bank voles, some resembling Creutzfeldt-Jakob disease and others mimicking Ger
View Article and Find Full Text PDF

Variably protease-sensitive prionopathy (VPSPr), originally identified in 2008, was further characterized and renamed in 2010. Thirty-seven cases of VPSPr have been reported to date, consistent with estimated prevalence of 0.7-1.

View Article and Find Full Text PDF

In most human sporadic prion diseases the phenotype is consistently associated with specific pairings of the genotype at codon 129 of the prion protein gene and conformational properties of the scrapie PrP (PrP) grossly identified types 1 and 2. This association suggests that the 129 genotype favours the selection of a distinct strain that in turn determines the phenotype. However, this mechanism cannot play a role in the phenotype determination of sporadic fatal insomnia (sFI) and a subtype of sporadic Creutzfeldt-Jakob disease (sCJD) identified as sCJDMM2, which share 129 MM genotype and PrP type 2 but are associated with quite distinct phenotypes.

View Article and Find Full Text PDF

Parkinsonism-dystonia is rare in carriers of PRNP P102L mutation. Severity and distribution of prion protein (PrP) deposition may influence the clinical presentation. We present such clinic-pathological correlation in a 56-year-old male with a PRNP P102L mutation associated with a phenotype characterized by rapidly progressing parkinsonism-dystonia.

View Article and Find Full Text PDF

Creutzfeldt-Jakob disease (CJD) is a neurodegenerative disorder characterized by the deposition of the pathological conformer (PrP(CJD)) of the host encoded cellular prion protein (PrP(C)). In genetic CJD associated with V210I or R208H PrP substitutions, the pathogenic role of mutant residues is still poorly understood. To understand how V210I or R208H PrP mutations facilitate the development of the disease, we determined by mass spectrometry the quantitative ratio of mutant/wild-type PrP(CJD) allotypes in brains from affected subjects.

View Article and Find Full Text PDF

Variably protease-sensitive prionopathy (VPSPr), a recently identified and seemingly sporadic human prion disease, is distinct from Creutzfeldt-Jakob disease (CJD) but shares features of Gerstmann-Sträussler-Scheinker disease (GSS). However, contrary to exclusively inherited GSS, no prion protein (PrP) gene variations have been detected in VPSPr, suggesting that VPSPr might be the long-sought sporadic form of GSS. The VPSPr atypical features raised the issue of transmissibility, a prototypical property of prion diseases.

View Article and Find Full Text PDF

Background: Prions, the infectious agents responsible for transmissible spongiform encephalopathies, consist mainly of the misfolded prion protein (PrP(Sc)). The unique mechanism of transmission and the appearance of a variant form of Creutzfeldt-Jakob disease, which has been linked to consumption of prion-contaminated cattle meat, have raised concerns about public health. Evidence suggests that variant Creutzfeldt-Jakob disease prions circulate in body fluids from people in whom the disease is silently incubating.

View Article and Find Full Text PDF

Prion diseases are characterized by tissue accumulation of a misfolded, β-sheet-enriched isoform (scrapie prion protein (PrP(Sc))) of the cellular prion protein (PrP(C)). At variance with PrP(C), PrP(Sc) shows a partial resistance to protease digestion and forms highly aggregated and detergent-insoluble polymers, two properties that have been consistently used to distinguish the two proteins. In recent years, however, the idea that PrP(Sc) itself comprises heterogeneous species has grown.

View Article and Find Full Text PDF

Prion diseases are neurodegenerative conditions associated with a misfolded and infectious protein, scrapie prion protein (PrP(Sc)). PrP(Sc) propagate prion diseases within and between species and thus pose risks to public health. Prion infectivity or PrP(Sc) presence has been demonstrated in urine of experimentally infected animals, but there are no recent studies of urine from patients with Creutzfeldt-Jakob disease (CJD).

View Article and Find Full Text PDF

Prion diseases are believed to propagate by the mechanism involving self-perpetuating conformational conversion of the normal form of the prion protein, PrP(C), to the misfolded, pathogenic state, PrP(Sc). One of the most intriguing aspects of these disorders is the phenomenon of prion strains. It is believed that strain properties are fully encoded in distinct conformations of PrP(Sc).

View Article and Find Full Text PDF

Six clinico-pathological phenotypes of sporadic Creutzfeldt-Jakob disease have been characterized which correlate at the molecular level with the type (1 or 2) of the abnormal prion protein, PrP(TSE), present in the brain and with the genotype of polymorphic (methionine or valine) codon 129 of the prion protein gene. However, to what extent these phenotypes with their corresponding molecular combinations (i.e.

View Article and Find Full Text PDF

Objective: The objective of the study is to report 2 new genotypic forms of protease-sensitive prionopathy (PSPr), a novel prion disease described in 2008, in 11 subjects all homozygous for valine at codon 129 of the prion protein (PrP) gene (129VV). The 2 new PSPr forms affect individuals who are either homozygous for methionine (129MM) or heterozygous for methionine/valine (129MV).

Methods: Fifteen affected subjects with 129MM, 129MV, and 129VV underwent comparative evaluation at the National Prion Disease Pathology Surveillance Center for clinical, histopathologic, immunohistochemical, genotypical, and PrP characteristics.

View Article and Find Full Text PDF

The presence of the prion protein (PrP) in normal human urine is controversial and currently inconclusive. This issue has taken a special relevance because prion infectivity has been demonstrated in urine of animals carrying experimental or naturally occurring prion diseases, but the actual presence and tissue origin of the infectious prion have not been determined. We used immunoprecipitation, one- and two-dimensional electrophoresis, and mass spectrometry to prove definitely the presence of PrP in human urine and its post-translational modifications.

View Article and Find Full Text PDF

Background: Variant Creutzfeldt-Jakob disease (vCJD) is a prion disease thought to be acquired by the consumption of prion-contaminated beef products. To date, over 200 cases have been identified around the world, but mainly in the United Kingdom. Three cases have been identified in the United States; however, these subjects were likely exposed to prion infection elsewhere.

View Article and Find Full Text PDF

Six subtypes of sporadic Creutzfeldt-Jakob disease with distinctive clinico-pathological features have been identified largely based on two types of the abnormal prion protein, PrP(Sc), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein. The existence of affected subjects showing mixed phenotypic features and concurrent PrP(Sc) types has been reported but with inconsistencies among studies in both results and their interpretation. The issue currently complicates diagnosis and classification of cases and also has implications for disease pathogenesis.

View Article and Find Full Text PDF

In prion disease, the abnormal conformer of the cellular prion protein, PrP(Sc), deposits in fibrillar protein aggregates in brain and other organs. Limited exposure of PrP(Sc) to proteolytic digestion in vitro generates a core fragment of 19-21 kDa, named PrP27-30, which is also found in vivo. Recent evidence indicates that abnormal truncated fragments other than PrP27-30 may form in prion disease either in vivo or in vitro.

View Article and Find Full Text PDF