Protein misfolding is implicated in many diseases, including serpinopathies. For the canonical inhibitory serpin α-antitrypsin, mutations can result in protein deficiencies leading to lung disease, and misfolded mutants can accumulate in hepatocytes, leading to liver disease. Using all-atom simulations based on the recently developed bias functional algorithm, we elucidate how wild-type α-antitrypsin folds and how the disease-associated S (Glu264Val) and Z (Glu342Lys) mutations lead to misfolding.
View Article and Find Full Text PDFIn this work we demonstrate that core level analysis is a powerful tool for disentangling the dynamics of a model polypeptide undergoing conformational changes in solution and disulphide bond formation. In particular, we present computer simulations within both initial and final state approximations of 1s sulphur core level shifts (S1s CLS) of the CYFC (cysteine-phenylalanine-tyrosine-cysteine) tetrapeptide for different folding configurations. Using increasing levels of accuracy, from Hartree-Fock and density functional theory to configuration interaction via a multiscale algorithm capable of reducing drastically the computational cost of electronic structure calculations, we find that distinct peptide arrangements present S1s CLS sizeably different (in excess of 0.
View Article and Find Full Text PDFProtease inhibition by serpins requires a large conformational transition from an active, metastable state to an inactive, stable state. Similar reactions can also occur in the absence of proteases, and these latency transitions take hours, making their time scales many orders of magnitude larger than are currently accessible using conventional molecular dynamics simulations. Using a variational path sampling algorithm, we simulated the entire serpin active-to-latent transition in all-atom detail with a physically realistic force field using a standard computing cluster.
View Article and Find Full Text PDFWe report on atomistic simulation of the folding of a natively-knotted protein, MJ0366, based on a realistic force field. To the best of our knowledge this is the first reported effort where a realistic force field is used to investigate the folding pathways of a protein with complex native topology. By using the dominant-reaction pathway scheme we collected about 30 successful folding trajectories for the 82-amino acid long trefoil-knotted protein.
View Article and Find Full Text PDFIn this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics.
View Article and Find Full Text PDFFor several decades, the presence of knots in naturally-occurring proteins was largely ruled out a priori for its supposed incompatibility with the efficiency and robustness of folding processes. For this very same reason, the later discovery of several unrelated families of knotted proteins motivated researchers to look into the physico-chemical mechanisms governing the concerted sequence of folding steps leading to the consistent formation of the same knot type in the same protein location. Besides experiments, computational studies are providing considerable insight into these mechanisms.
View Article and Find Full Text PDFSilicon carbide (SiC) has unique chemical, physical, and mechanical properties. A factor strongly limiting SiC-based technologies is the high-temperature synthesis. In this work, we provide unprecedented experimental and theoretical evidence of 3C-SiC epitaxy on silicon at room temperature by using a buckminsterfullerene (C(60)) supersonic beam.
View Article and Find Full Text PDFWe investigate the folding mechanism of the WW domain Fip35 using a realistic atomistic force field by applying the Dominant Reaction Pathways approach. We find evidence for the existence of two folding pathways, which differ by the order of formation of the two hairpins. This result is consistent with the analysis of the experimental data on the folding kinetics of WW domains and with the results obtained from large-scale molecular dynamics simulations of this system.
View Article and Find Full Text PDFUsing the dominant reaction pathways method, we perform an ab initio quantum-mechanical simulation of a conformational transition of a peptide chain. The method we propose makes it possible to investigate the out-of-equilibrium dynamics of these systems, without resorting to an empirical representation of the molecular force field. It also allows to study rare transitions involving rearrangements in the electronic structure.
View Article and Find Full Text PDF