The behavior of two polar solvents, ethylene glycol (EG) and dimethylformamide (DMF), entrapped in sodium bis-(2-ethylhexyl) phosphate (NaDEHP)/n-heptane reverse micelles (RMs) was investigated using dynamic light scattering (DLS), molecular probe absorption and FT-IR spectroscopy. DLS results reveal the formation of RMs containing EG and DMF as a polar component. To the best of our knowledge this is the first report where both polar solvents are entrapped by the NaDEHP surfactant to effectively create RMs.
View Article and Find Full Text PDFThe water/sodium bis(2-ethylhexyl) phosphate (NaDEHP) reverse micelle (RM) system is revisited by using, for the first time, molecular probes to investigate interface properties. The solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) and 6-propionyl-2-(N,N-dimethyl)aminonaphthalene (PRODAN) in the water/NaDEHP/toluene system is studied, and the results are compared with those obtained in water/sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (AOT)/toluene RM media. The results demonstrate that the micropolarity, microviscosity, interfacial water structure, molecular probe partition, and intramolecular electron-transfer processes are dramatically altered for NaDEHP RM interfaces in comparison to the AOT systems.
View Article and Find Full Text PDFIn this work, we have investigated the behavior of the cationic hemicyanine trans-4-[4-(dimethylamino)-styryl]-N-methylpyridinium iodide (HC) in benzene/benzyl-n-hexadecyl dimethylammonium chloride (BHDC)/water reverse micelle media using absorption and emission spectroscopy in addition to the steady-state and time-resolved fluorescence emission techniques and compare the results to those obtained in benzene/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/water reverse micelle media (Moyano, F.; et al. J.
View Article and Find Full Text PDFIn this work, we report the behavior of two different hemicyanines, trans-4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (HC) and 4-[4-(dihexadecylamino)styryl]-N-methylpyridinium iodide (DIA), in water/sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/benzene reverse micelles media using absorption and emission spectroscopy in addition to the steady-state and time-resolved fluorescence emission techniques. Our results show that the AOT reverse micelles interface has the nontrivial deaggregation property, a result that may have potential application for the preparation of dye lasers, which require a noninteracting monomeric form of the dye. Also, we show that the water interacts with a different region of the AOT moiety depending on the external organic solvent used and, in addition, we also present a nice, simple, and noteworthy method that helps to examine the presence or the absence of organized media.
View Article and Find Full Text PDF