Publications by authors named "Silvina Ribeiro-Samy"

Liquid biopsy offers unique opportunities for low invasive diagnosis, real-time patient monitoring and treatment selection. The phenotypic and molecular profile of circulating tumor cells (CTCs) can provide key information about the biology of tumor cells, contributing to personalized therapy. CTC isolation is still challenging, mainly due to their heterogeneity and rarity.

View Article and Find Full Text PDF

The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation.

View Article and Find Full Text PDF

Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)--immortalized, neonatal, and adult-of the chitosan substrate.

View Article and Find Full Text PDF

Biosynthetic nerve grafts are desired as alternative to autologous nerve grafts in peripheral nerve reconstruction. Artificial nerve conduits still have their limitations and are not widely accepted in the clinical setting. Here we report an analysis of fine-tuned chitosan tubes used to reconstruct 10 mm nerve defects in the adult rat.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to devastating neurological deficits. Several tissue engineering (TE)-based approaches have been investigated for repairing this condition. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) is found to be particularly attractive for TE applications due to its properties, such as biodegradability, biocompatibility, thermoplasticity and piezoelectricity.

View Article and Find Full Text PDF

It has been demonstrated that bone marrow mesenchymal stem cell (BM-MSCs) transplantation has beneficial effects on several central nervous system (CNS) debilitating conditions. Growing evidence indicate that trophic factors secreted by these cells are the key mechanism by which they are acting. These cells are frequently used in combination with 3D artificial matrices, for instance hydrogels, in tissue engineering-based approaches.

View Article and Find Full Text PDF

The control and manipulation of cells that trigger secondary mechanisms following spinal cord injury (SCI) is one of the first opportunities to minimize its highly detrimental outcomes. Herein, the ability of surface-engineered carboxymethylchitosan/polyamidoamine (CMCht/PAMAM) dendrimer nanoparticles to intracellularly deliver methylprednisolone (MP) to glial cells, allowing a controlled and sustained release of this corticosteroid in the injury site, is investigated. The negatively charged MP-loaded CMCht/PAMAM dendrimer nanoparticles with sizes of 109 nm enable a MP sustained release, which is detected for a period of 14 days by HPLC.

View Article and Find Full Text PDF