Environ Sci Pollut Res Int
January 2024
In this work, the vapor pressure of pesticides is employed as an indicator of their volatility potential. Quantitative Structure-Property Relationship models are established to predict the classification of compounds according to their volatility, into the high and low binary classes separated by the 1-mPa limit. A large dataset of 1005 structurally diverse pesticides with known experimental vapor pressure data at 20 °C is compiled from the publicly available Pesticide Properties DataBase (PPDB) and used for model development.
View Article and Find Full Text PDFWater solubility is a key physicochemical parameter in pesticide control and regulation, although sometimes its experimental determination is not an easy task. In this study, we present Quantitative Structure-Property Relationships (QSPRs) for predicting the water solubility at 20 °C of 1211 approved heterogeneous pesticide compounds, collected from the online Pesticides Properties Data Base (PPDB). Validated and generally applicable Multivariable Linear Regression (MLR) models were established, including molecular descriptors carrying constitutional and topological aspects of the analyzed compounds.
View Article and Find Full Text PDFIn advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k ) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares.
View Article and Find Full Text PDFAbsorption and fluorescence emission spectra of the polycyclic aromatic hydrocarbons benzo[a]pyrene (BaP) and benzo[e]pyrene (BeP) in solution and adsorbed on silica have been obtained and compared to examine the spectroscopic effects of clustering. Molecular mechanics calculations with the UFF potential were done to optimize monomer, dimer and trimer geometries, and energy differences were determined by MP2/6-31G* calculations. Fluorescence emission spectra of adsorbed BeP and BaP display a red shift that progresses with increased loading, and the two differ in their photodegradation kinetics.
View Article and Find Full Text PDF