The ability of vitrification when crossing the glass transition temperature (T) of confined and bulk water is crucial for myriad phenomena in diverse fields, ranging from the cryopreservation of organs and food to the development of cryoenzymatic reactions, frost damage to buildings, and atmospheric water. However, determining water's T remains a major challenge. Here, we elucidate the glass transition of water by analyzing the calorimetric behavior of nano-confined water across various pore topologies (diameters: 0.
View Article and Find Full Text PDFThe dynamics of water confined in mesoporous MIP (2-3 nm pores in size) with silica gel (secondary silica; further, the abbreviation SG will be used) and MAP (10-35 nm pores in size) without SG borosilicate glasses have been studied by broadband dielectric spectroscopy (BDS), nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC). MIP samples contain secondary silica inside the pores and provide a confinement size of about 2-3 nm, whereas MAP samples are free of secondary silica and provide a confinement size of about 10-35 nm. It is shown by BDS and NMR techniques that water exhibits a dynamic crossover of around 180 K when it is confined in MIP samples.
View Article and Find Full Text PDFClimate change and water are inseparably connected. Extreme weather events cause water to become more scarce, polluted, and erratic than ever. Therefore, we urgently need to develop solutions to reduce water contamination.
View Article and Find Full Text PDFThe detection of emerging contaminants in bodies of water has steadily increased in recent years, becoming a severe problem threatening human and ecosystem health. Developing new materials with adsorption properties to remove these pollutants represents an important step toward a potential solution. In this paper, a polybutylene adipate terephthalate (PBAT) nanofibrous membrane incorporating clinoptilolite zeolite was developed and its excellent performance in removing tetracycline (TC) and methylene blue (MB) from water was demonstrated.
View Article and Find Full Text PDFSome of the best nucleating agents in nature are ice-nucleating proteins, which boost ice growth better than any other material. They can induce immersion freezing of supercooled water only a few degrees below 0 °C. An open question is whether this ability also extends to the deposition mode, i.
View Article and Find Full Text PDFThe use of nanomaterials to enhance the physical and mechanical properties and durability of cement materials in their hardened state has been studied for a long time in many investigations. In comparison, fewer studies focus on nanomaterials' influence on the fresh state when the cement reaction starts. In addition, if we consider ternary blended cement (as those used for applications in marine environments), this has been rarely studied.
View Article and Find Full Text PDFCharacterizing the segmental dynamics of proteins, and intrinsically disordered proteins in particular, is a challenge in biophysics. In this study, by combining data from broadband dielectric spectroscopy (BDS) and both depolarized (DDLS) and polarized (PDLS) dynamic light scattering, we were able to determine the dynamics of a small peptide [ε-poly(lysine)] in water solutions in two different conformations (pure β-sheet at pH = 10 and a more disordered conformation at pH = 7). We found that the segmental (α-) relaxation, as probed by DDLS, is faster in the disordered state than in the folded conformation.
View Article and Find Full Text PDFThe amino acid lysine has been shown to prevent water crystallization at low temperatures in saturated aqueous solutions [S. Cerveny and J. Swenson, Phys.
View Article and Find Full Text PDFDielectric spectroscopy is a robust method to investigate relaxations of molecular dipoles. It is particularly useful for studies of biological solutions because of the potential of this method to cover a broad range of dynamical time scales typical for such systems. However, this technique does not provide any information about the nature of the molecular motions, which leads to a certain underemployment of dielectric spectroscopy for gaining microscopic understanding of material properties.
View Article and Find Full Text PDFThe dynamics of water at supercooled temperatures in aqueous solutions of different types of solutes has been deeply analyzed in the literature. In these previous works and in most of the cases, a single relaxation of water molecules is observed. In this work, we analyze the dynamics of water in solutions for which a dual relaxation of water molecules is experimentally measured.
View Article and Find Full Text PDFIt is well-accepted that hydration water is crucial for the structure, dynamics, and function of proteins. However, the exact role of water for the motions and functions of proteins is still debated. Experiments have shown that protein and water dynamics are strongly coupled but with water motions occurring on a considerably faster time scale (the so-called slaving behavior).
View Article and Find Full Text PDFThe dynamics of water confined in cement materials is still a matter of debate in spite of the fact that water has a major influence on properties such as durability and performance. In this study, we have investigated the dynamics of water confined in Portland cement (OPC) at different curing ages (3 weeks and 4 years after preparation) and at three water-to-cement ratios (w/c, 0.3, 0.
View Article and Find Full Text PDFStudies of protein dynamics at low temperatures are generally performed on hydrated powders and not in biologically realistic solutions of water because of water crystallization. However, here we avoid the problem of crystallization by reducing the size of the biomolecules. We have studied oligomers of the amino acid l-lysine, fully dissolved in water, and our dielectric relaxation data show that the glass transition-related dynamics of the oligomers is determined by the water dynamics, in a way similar to that previously observed for solvated proteins.
View Article and Find Full Text PDFWater in confined geometries has obvious relevance in biology, geology, and other areas where the material properties are strongly dependent on the amount and behavior of water in these types of materials. Another reason to restrict the size of water domains by different types of geometrical confinements has been the possibility to study the structural and dynamical behavior of water in the deeply supercooled regime (e.g.
View Article and Find Full Text PDFConfined water in the slit mesopores of the mineral tobermorite provides an excellent model system for analyzing the dynamic properties of water confined in cement-like materials. In this work, we use broadband dielectric spectroscopy (BDS) to analyze the dynamic of water entrapped in this crystalline material. Two samples, one natural and one synthetic, were analyzed, and despite their similar structure, the motion of confined water in their zeolitic cavity displays considerably different behavior.
View Article and Find Full Text PDFIn this work we study the influence of adding nano-silica (SiO2, Nyasil™) and aminopropyl (-(CH2)3-NH2,) functionalized silica nanoparticles (Stoga) during the synthesis of calcium-silicate-hydrate (C-S-H gel). Characterization by solid state (29)Si NMR and ATR-FTIR spectroscopy showed that the addition of both particle types increases the average length of the silicate chains in C-S-H gel being this effect slightly more important in the case of Stoga particles. In addition, (13)C NMR and XPS confirmed that the aminopropyl chain remains in the final product cleaved to silicon atoms at the end of the silicate chain of C-S-H gel whereas XRD measurements showed that this result in an increment in the basal distance compared with ordinary CSH.
View Article and Find Full Text PDFIn this review we discuss the relaxation dynamics of glassy and deeply supercooled water in different types of systems. We compare the dynamics of such interfacial water in ordinary aqueous solutions, hard confinements and biological soft materials. In all these types of systems the dielectric relaxation time of the main water process exhibits a dynamic crossover from a high-temperature non-Arrhenius temperature dependence to a low-temperature Arrhenius behavior.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2014
The dynamics of supercooled water in aqueous solutions of the single amino acid L-lysine has been studied by broadband dielectric spectroscopy. The chosen biological system is unique in the sense that the water content is high enough to fully dissolve the amino acid, but low enough to avoid crystallisation to ice at any temperature. This is not possible to achieve for proteins or other larger biomolecules, where either hydrated samples without ice or solutions with large quantities of ice, or a cryoprotectant sugar, have to be studied at low temperatures.
View Article and Find Full Text PDFIn this paper, the fourth one of our series on the dielectric spectrum symmetrical broadening of water, we consider amino acid (AA) aqueous solutions. The developed 3D-trajectory is applied here to the variety of zwitterion amino acids representing both the hydrophobic and hydrophilic nature of their residues. The dipole moment of amino acids due to their zwitterion determines their interaction with the solvent and reflects mostly the dipole-matrix interactions described in our Paper I [E.
View Article and Find Full Text PDFIn this study, the rotational dynamics of hydration water confined in calcium-silicate-hydrate (C-S-H) gel with a water content of 22 wt.% was studied by broadband dielectric spectroscopy in broad temperature (110-300 K) and frequency (10(-1)-10(8) Hz) ranges. The C-S-H gel was used as a 3D confining system for investigating the possible existence of a fragile-to-strong transition for water around 220 K.
View Article and Find Full Text PDF(2)H-nuclear magnetic resonance (NMR) and neutron scattering (NS) on isotopically labelled samples have been combined to investigate the structure and dynamics of polyvinylpyrrolidone (PVP) aqueous solutions (4 water molecules/monomeric unit). Neutron diffraction evidences the nanosegregation of polymer main-chains and water molecules leading to the presence of water clusters. NMR reveals the same characteristic times and spectral shape as those of the slower process observed by broadband dielectric spectroscopy in this system [S.
View Article and Find Full Text PDFThe complex dielectric permittivity of eight different amino acids in water solutions was determined in the frequency range from 0.2 to 20 GHz at room temperature, trying to span the whole range of solubility in each case. Two relaxations were observed at room temperature in this frequency range, which can be mainly assigned to the rotation of amino acids in the aqueous environment, and the reorientational motion of water molecules, respectively.
View Article and Find Full Text PDFIn this work, high-resolution inelastic neutron scattering (INS) has been used to provide novel insights into the properties of confined poly(ethylene oxide) (PEO) chains. Two limits have been explored in detail, namely, single-layer 2D-polymer intercalation into graphite oxide (GO) and surface polymer adsorption onto thermally reduced and exfoliated graphite oxide, that is, graphene (G) sheets. Careful control over the degree of GO oxidation and exfoliation reveals three distinct cases of spatial confinement: (i) subnanometer 2D-confinement; (ii) frustrated absorption; and (iii) surface immobilization.
View Article and Find Full Text PDFThe dielectric relaxation behavior of D-arabinose aqueous solutions at different water concentrations is examined by broadband dielectric spectroscopy in the frequency range of 10(-2) -10(7) Hz and in the temperature range of 120-300 K. Differential scanning calorimetry is also performed to find the glass transition temperatures (T(g)). In addition, the same solutions are analyzed by Fourier transform infrared (FTIR) spectroscopy using the attenuated total reflectance (ATR) method at the same temperature interval and in the frequency range of 3800-2800 cm(-1).
View Article and Find Full Text PDF