Publications by authors named "Silvina Bartesaghi"

This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively.

View Article and Find Full Text PDF

Background And Aims: Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure.

Methods: Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts.

View Article and Find Full Text PDF

Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration.

View Article and Find Full Text PDF

Exponential increases in the development of medical knowledge, the expansion of areas where medicine develops its activities, the emergence of new pathologies ( COVID-19), novel diagnostic methods and therapeutic strategies, together with the appearance of multiple communication and information technologies, determined that the education of future physicians required targeted training in scientific methodology. The design and execution of a course in scientific methodology in the of Facultad de Medicina, Universidad de la República, Uruguay, is described. The course is carried out at an advanced stage of the medical studies for all the students, in which they develop a 10-month research project supervised by the medical school faculty.

View Article and Find Full Text PDF

The widespread interest in free radicals in biology extends far beyond the effects of ionizing radiation, with recent attention largely focusing on reactions of free radicals derived from peroxynitrite (i.e., hydroxyl, nitrogen dioxide, and carbonate radicals).

View Article and Find Full Text PDF

Removal of moderately oxidized proteins is mainly carried out by the proteasome, while highly modified proteins are no longer degradable. However, in the case of proteins modified by nitration of tyrosine residues to 3-nitrotyrosine (NOY), the role of the proteasome remains to be established. For this purpose, degradation assays and mass spectrometry analyses were performed using isolated proteasome and purified fractions of native cytochrome c (Cyt c) and tyrosine nitrated proteoforms (NOY74-Cyt c and NOY97-Cyt c).

View Article and Find Full Text PDF

Tyrosine is a critical component of many proteins and can be the subject of oxidative posttranslational modifications. Furthermore, the oxidation of tyrosine residues to phenoxyl radicals, sometimes quite stable, is essential for some enzymatic functions. The lifetime and fate of tyrosine phenoxyl radicals in biological systems are largely driven by the availability and proximity of oxidants and reductants.

View Article and Find Full Text PDF

Oxidative post-translational modification of proteins by molecular oxygen (O2)- and nitric oxide (•NO)-derived reactive species is a usual process that occurs in mammalian tissues under both physiological and pathological conditions and can exert either regulatory or cytotoxic effects. Although the side chain of several amino acids is prone to experience oxidative modifications, tyrosine residues are one of the preferred targets of one-electron oxidants, given the ability of their phenolic side chain to undergo reversible one-electron oxidation to the relatively stable tyrosyl radical. Naturally occurring as reversible catalytic intermediates at the active site of a variety of enzymes, tyrosyl radicals can also lead to the formation of several stable oxidative products through radical-radical reactions, as is the case of 3-nitrotyrosine (NO2Tyr).

View Article and Find Full Text PDF

Proteins are main targets of oxidants in biological systems. This oxidation may occur in the protein backbone as well as in certain amino acid side chains, depending on the oxidant and amino acid intrinsic reactivity. Moreover, many enzymes are capable of generating stable amino acid radicals, such as tyrosyl, tryptophanyl and cysteinyl radicals.

View Article and Find Full Text PDF

Peroxynitrite is a short-lived and reactive biological oxidant formed from the diffusion-controlled reaction of the free radicals superoxide (O) and nitric oxide (NO). In this review, we first analyze the biochemical evidence for the formation of peroxynitrite in vivo and the reactions that lead to it. Then, we describe the principal reactions that peroxynitrite undergoes with biological targets and provide kinetic and mechanistic details.

View Article and Find Full Text PDF

In this review we provide an analysis of the biochemistry of peroxynitrite and tyrosine nitration. Peroxynitrite is the product of the diffusion-controlled reaction between superoxide (O) and nitric oxide (NO). This process is in competition with the enzymatic dismutation of O and the diffusion of NO across cells and tissues and its reaction with molecular targets (e.

View Article and Find Full Text PDF

Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer.

View Article and Find Full Text PDF

Glutamine synthetase is an important enzyme that catalyzes the ATP-dependent formation of glutamine from glutamate and ammonia. In mammals, it plays a key role in preventing excitotoxicity in the brain and detoxifying ammonia in the liver. In plants and bacteria, it is fundamental for nitrogen metabolism, being critical for the survival of the organism.

View Article and Find Full Text PDF

Significance: "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues.

View Article and Find Full Text PDF

Protein tyrosine (Tyr) nitration is a post-translational modification yielding 3-nitrotyrosine (NO2 -Tyr). Formation of NO2 -Tyr is generally considered as a marker of nitro-oxidative stress and is involved in some human pathophysiological disorders, but has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as an O2 transporter.

View Article and Find Full Text PDF

Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO(-)) and nitrogen dioxide ((•)NO₂). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process.

View Article and Find Full Text PDF

Background: Peroxynitrite, the product of the reaction between superoxide radicals and nitric oxide, is an elusive oxidant with a short half-life and a low steady-state concentration in biological systems; it promotes nitroxidative damage.

Scope Of Review: We will consider kinetic and mechanistic aspects that allow rationalizing the biological fate of peroxynitrite from data obtained by a combination of methods that include fast kinetic techniques, electron paramagnetic resonance and kinetic simulations. In addition, we provide a quantitative analysis of peroxynitrite production rates and conceivable steady-state levels in living systems.

View Article and Find Full Text PDF

Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O(·)) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data.

View Article and Find Full Text PDF

Oxidation of tyrosine moieties by radicals involved in lipid peroxidation is of current interest; while a rate constant has been reported for reaction of lipid peroxyl radicals with a tyrosine model, little is known about the reaction between tyrosine and alkoxyl radicals (also intermediates in the lipid peroxidation chain reaction). In this study, the reaction between a model alkoxyl radical, the tert-butoxyl radical and tyrosine was followed using steady-state and pulse radiolysis. Acetone, a product of the β-fragmentation of the tert-butoxyl radical, was measured; the yield was reduced by the presence of tyrosine in a concentration- and pH-dependent manner.

View Article and Find Full Text PDF

Until recently, nitrite has been considered a stable oxidation inert metabolite of nitric oxide ((∙)NO) metabolism. This view is now changing as it has been shown that nitrite can be reduced back to (∙)NO and thus one may consider a reversible interaction regarding (∙)NO:nitrite couple. Not only physiological regulatory actions have been assigned to nitrite but also may represent, in addition to nitrate, the largest (∙)NO reservoir in the body.

View Article and Find Full Text PDF

Modification of tyrosine (TyrOH) is used as a marker of oxidative and nitrosative stress. 3,3'-Dityrosine formation, in particular, reflects oxidative damage and results from the combination of two tyrosyl phenoxyl radicals (TyrO·). This reaction is in competition with reductive processes in the cell which 'repair' tyrosyl radicals: possible reductants include thiols and ascorbate.

View Article and Find Full Text PDF

Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals.

View Article and Find Full Text PDF
Article Synopsis
  • * The study measured how quickly H(2)S reacts with different oxidants, finding significant rates of reaction with substances like peroxynitrite and nitrogen dioxide, indicating that H(2)S may act as an antioxidant in certain conditions.
  • * Despite its reactivity and potential protective effects, the low natural levels of hydrogen sulfide in tissues suggest that its direct interactions with oxidants can't fully explain its benefits.
View Article and Find Full Text PDF

Protein tyrosine dimerization and nitration by biologically relevant oxidants usually depend on the intermediate formation of tyrosyl radical ((*)Tyr). In the case of tyrosine oxidation in proteins associated with hydrophobic biocompartments, the participation of unsaturated fatty acids in the process must be considered since they typically constitute preferential targets for the initial oxidative attack. Thus, we postulate that lipid-derived radicals mediate the one-electron oxidation of tyrosine to (*)Tyr, which can afterward react with another (*)Tyr or with nitrogen dioxide ((*)NO(2)) to yield 3,3'-dityrosine or 3-nitrotyrosine within the hydrophobic structure, respectively.

View Article and Find Full Text PDF

Protein tyrosine oxidation mechanisms in hydrophobic biocompartments (i.e., biomembranes, lipoproteins) leading to nitrated, dimerized, and hydroxylated products are just starting to be appreciated.

View Article and Find Full Text PDF