The determination of secondary volatile degradation products in drying oil extracts is substantial to prevent formation of undesirable metal formates in paintings and/or other artefacts. This study develops a simple, cost-effective, and reliable, high-performance liquid chromatography with diode array detector (HPLC-DAD) method to determine three secondary volatile degradation products (methanol, formaldehyde, and formic acid) in drying oils, including linseed, poppy-seed, and walnut oil. Extraction of analytes was performed using QuEChERS-based procedure followed by metal oxide-based dispersive solid-phase extraction (d-SPE) clean-up and presented a good performance for all of the volatile analytes of interest with recoveries in the range of 90-120% after application of the nanostructured cerium oxide-based (CeO) and zirconia-based (ZrO) sorbents prepared by favorable and ecological-friendly methods.
View Article and Find Full Text PDFSaponification, resulting from pigment-binder interactions, is one of the most endangering phenomena affecting the appearance and stability of painted works of art. The crystallization of metal carboxylates (soaps) in paint layers is recently assumed as the most critical point for the development of undesirable changes induced by saponification, however, the factors triggering it are not fully understood. The red pigment cinnabar (HgS) has been suspected of contributing to saponification, however, the paucity of reliable reference structural data limited the experimental research of its effect at the molecular level.
View Article and Find Full Text PDFThe lack of an appropriate methodology makes numerous important issues related to miniature paintings unresolved-despite the fact that the portrait miniatures of the seventeenth to the nineteenth century represent a highly specific and significant field of European fine art. One of these issues is represented by chemical degradation of miniatures and its analytical evidence. Fragility, variability of the employed materials, and detailed execution make their analysis highly challenging-since no sampling is usually allowed and any change on their surface is immediately noticeable.
View Article and Find Full Text PDFLead carboxylates are an extensive group of compounds studied for their promising industrial applications and for their risky behavior when they are formed in oil paintings as corrosion products of lead-based pigments, leading to serious deterioration of paintings. Although the processes leading to the formation of aggregates, protrusions or inclusions, affecting undesirably the appearance of paintings, are assumed to be long term, neo-formed lead carboxylates are detectable in the early stage of paint drying. To uncover the chemical changes in lead pigments during the drying of oil paint films, model systems consisting of minium (Pb3O4) and four common drying oils were studied by X-ray powder diffraction (XRPD), 13C and 207Pb solid state NMR (ssNMR) spectroscopy and Fourier-transformed infrared spectroscopy (FTIR).
View Article and Find Full Text PDFLong-chain lead carboxylates, on the one hand, represent compounds for versatile industrial applications in high-tech industries, while on the other hand, they are predominant constituents of secondary products of saponification of paint layers in works of art. Affecting significantly the appearance and stability of painted works of art, saponification is one of the most serious problems of preservation of cultural heritage objects. Despite their versatility as well as hazardousness, there is a paucity of single-crystal X-ray structures of long-chain carboxylates, due to difficulties in preparing single crystals of sufficient quality.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2015
Temperature-related degradation of pure synthetic as well as partly oxidised natural vivianite has been studied by high-temperature X-ray diffraction (HT-XRD) covering the whole extent of the temperature-related stability of its structure. While temperatures around 70°C are already damaging to vivianite, exposition to 160°C results in complete amorphisation of both the vivianite and its oxidation products. As indicated by Mössbauer spectroscopy, temperature-induced oxidation of vivianite starts at 90°C.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2014
An unambiguous identification of pigments in paint layers of works of art forms a substantial part of the description of a painting technique, which is essential for the evaluation of the work of art including determination of the period and/or region of its creation as well as its attribution to a workshop or an author. Copper pigments represent a significant group of materials used in historic paintings. Because of their substantial diversity and, on the other hand, similarity, their identification and differentiation is a challenging task.
View Article and Find Full Text PDFFly ashes generated by power and heating plants are commonly used in the production of building materials in some countries, mainly as partial replacement of cement or aggregates in concrete. The ashes from municipal solid waste incinerators can be applied in a similar way. However, their chemical and mineralogical composition, granulometry and toxic constituents have to be taken into account.
View Article and Find Full Text PDFApplication of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance.
View Article and Find Full Text PDFThe uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition.
View Article and Find Full Text PDFCorrect identification of pigments and all accompanying phases found in colour layers of historical paintings are relevant for searching their origin and pigment preparation pathways and for specification of their further degradation processes. We successfully applied the analytical route combining non-destructive in situ X-ray fluorescence analyses with subsequent laboratory investigation of micro-samples by optical microscopy, scanning electron microscopy/energy-dispersive spectroscopy and X-ray powder micro-diffraction (micro-XRD) to obtain efficiently all the data relevant for mineralogical interpretations of the copper pigments origin. Cu salts (carbonates, chlorides, sulphates, etc.
View Article and Find Full Text PDF