Publications by authors named "Silvie Durpekova"

This work describes the preparation of a novel biopolymer hydrogel based on acid whey, cellulose derivatives and polyvinyl alcohol (PVA). The hydrogel was prepared and characterized with the aim of producing an environmentally-friendly soil amendment to increase water retention capacity of the soil. The findings showed considerable swelling properties of the hydrogels depending on the PVA content and crosslinking density.

View Article and Find Full Text PDF

The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study.

View Article and Find Full Text PDF

This manuscript details the preparation and characterization of a renewable biocomposite material intended as a soil conditioner based on low-molecular-weight poly(lactic acid) (PLA) and residual biomass (wheat straw and wood sawdust). The swelling properties and biodegradability of the PLA-lignocellulose composite under environmental conditions were evaluated as indicators of its potential for applications in soil. Its mechanical and structural properties were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

A set of renewable and biodegradable hydrogels based on acid whey and cellulose derivatives blended with poly(lactic acid) (PLA) were designed as eco-friendly biopolymeric material for sustainable agricultural applications. The physico-chemical properties of the hydrogel were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and rheological measurements. The effect of the whey/polysaccharide/PLA hydrogel on soil quality improvement (water retention study, biodegradability, loading capacity and release of the fertilizers) and the growth pattern of Raphanus sativus and Phaseolus vulgaris has been also studied.

View Article and Find Full Text PDF

This study describes the development of a renewable and biodegradable biopolymer-based hydrogel for application in agriculture and horticulture as a soil conditioning agent and for release of a nutrient or fertilizer. The novel product is based on a combination of cellulose derivatives (carboxymethylcellulose and hydroxyethylcellulose) cross-linked with citric acid, as tested at various concentrations, with acid whey as a medium for hydrogel synthesis in order to utilize the almost unusable by-product of the dairy industry. The water uptake of the hydrogel was evaluated by swelling tests under variations in pH, temperature and ion concentration.

View Article and Find Full Text PDF