Publications by authors named "Silvia de la Barrera"

Antimicrobial resistance is a global health problem. In 2021, it was estimated almost half a million of multidrug-resistant tuberculosis (MDR-TB) cases. Besides, non-tuberculous mycobacteria (NTM) are highly resistant to several drugs and the emergence of fluoroquinolone (FQ) resistant M.

View Article and Find Full Text PDF

We previously reported that patients with multidrug-resistant tuberculosis (MDR-TB) showed low systemic and Mtb-induced Th22 responses associated to high sputum bacillary load and severe lung lesions suggesting that Th22 response could influence the ability of these patients to control bacillary growth and tissue damage. In MDR-TB patients, the percentage of IL-22 cells inversely correlates with the proportion of senescent PD-1 T cells. Herein, we aimed to evaluate the pathways involved on the regulation of systemic and Mtb-induced Th22 response in MDR-TB and fully drug-susceptible TB patients (S-TB) and healthy donors.

View Article and Find Full Text PDF

Tuberculosis (TB) is an infectious disease, caused by , primarily affecting the lungs. The strain of the Haarlem family named M was responsible for a large multidrug-resistant TB (MDR-TB) outbreak in Buenos Aires. This outbreak started in the early 1990s and in the mid 2000s still accounted for 29% of all MDR-TB cases in Argentina.

View Article and Find Full Text PDF

Coxsackievirus B3 (CVB3) is a globally prevalent enterovirus of the Picornaviridae family that is frequently associated with viral myocarditis (VM). Neutrophils, as first responders, may be key cells in determining viral disease outcomes; however, neutrophils have been poorly studied with respect to viral infection. Although neutrophils have been ascribed a relevant role in early cardiac inflammation, their precise role in CVB3 infection has not yet been evaluated.

View Article and Find Full Text PDF

M strain, the most prevalent multidrug-resistant strain of () in Argentina, has mounted mechanisms to evade innate immune response. The role of human bronchial epithelium in infection remains unknown as well as its crosstalk with neutrophils (PMN). In this work, we evaluate whether M and H37Rv strains invade and replicate within bronchial epithelial cell line Calu-6 and how conditioned media (CM) derived from infected cells alter PMN responses.

View Article and Find Full Text PDF

C5a anaphylatoxin is a component of the complement system involved in the modulation of T-cell polarization. Herein we investigated whether C5a receptors, C5aR and C5L2, modulate the cytokine profiles induced by Mycobacterium tuberculosis (Mtb). We analyzed the impact of both receptors on T helper cell polarization induced by the multidrug resistant outbreak strain named M, which is a poor IFN-γ inducer compared with the laboratory strain H37Rv.

View Article and Find Full Text PDF

Tuberculosis (TB) is a complex disease, and the success of the bacterium depends on its ability to evade the immune response. Previously, we determined that Mycobacterium tuberculosis (Mtb) impairs the function of dendritic cells (DC), promoting the generation of cells that are poor stimulators of mycobacterial antigen-specific CD4T cells, which are required to control this persistent infection. In this study, we aimed to determine the mechanisms by which monocyte-derived DCs differentiated in the presence of Mtb (MtbDC) may impact on the proliferation of specific anti-mycobacterial T cells.

View Article and Find Full Text PDF

In human tuberculosis (TB), CD8+ T cells contribute to host defense by the release of Th1 cytokines and the direct killing of Mycobacterium tuberculosis (Mtb)-infected macrophages via granule exocytosis pathway or the engagement of receptors on target cells. Previously we demonstrated that strain M, the most prevalent multidrug-resistant (MDR) Mtb strain in Argentine, is a weak inducer of IFN-γ and elicits a remarkably low CD8-dependent cytotoxic T cell activity (CTL). In contrast, the closely related strain 410, which caused a unique case of MDR-TB, elicits a CTL response similar to H37Rv.

View Article and Find Full Text PDF

Mycobacterium tuberculosis has a considerable degree of genetic variability resulting in different epidemiology and disease outcomes. We evaluated the pathogen-host cell interaction of two genetically closely-related multidrug-resistant M. tuberculosis strains of the Haarlem family, namely the strain M, responsible for an extensive multidrug-resistant tuberculosis outbreak, and its kin strain 410 which caused a single case in two decades.

View Article and Find Full Text PDF

Tuberculosis (TB) is one of the world's most pernicious diseases mainly due to immune evasion strategies displayed by its causative agent Mycobacterium tuberculosis (Mtb). Blood monocytes (Mos) represent an important source of DCs during chronic infections; consequently, the alteration of their differentiation constitutes an escape mechanism leading to mycobacterial persistence. We evaluated whether the CD16(+)/CD16(-) Mo ratio could be associated with the impaired Mo differentiation into DCs found in TB patients.

View Article and Find Full Text PDF

Some multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) genotypes are the cause of large outbreaks, including strain M identified in Argentina. In contrast, its kin strain 410 has only caused a single case to date. Cell wall antigens from Mtb were associated with the modulation of macrophage (MΦ) cell death, and the ability to inhibit of MΦ apoptosis is considered a virulence mechanism.

View Article and Find Full Text PDF

Tuberculosis pathogenesis was earlier thought to be mainly related to the host but now it appears to be clear that bacterial factors are also involved. Genetic variability of Mycobacterium tuberculosis (Mtb) could be slight but it may lead to sharp phenotypic differences. We have previously reported that nonopsonized Mtb H37Rv induce apoptosis of polymorphonuclear neutrophils (PMNs) by a mechanism that involves the p38 pathway.

View Article and Find Full Text PDF

Background: The proinflammatory cytokine interleukin 17 (IL-17) plays an important role in immune responses but it is also associated with tissue-damaging inflammation. So, we evaluated the ability of Mycobacterium tuberculosis clinical isolates to induce IL-17 in tuberculosis (TB) patients and in healthy human tuberculin reactors (PPD(+)HD).

Methods: IL-17, interferon γ (IFN-γ), and interleukin 23 (IL-23) receptor expression were evaluated ex vivo and cultured peripheral blood mononuclear cells from TB and PPD(+)HD stimulated with irradiated clinical isolates from multidrug resistant (MDR) outbreaks M (Haarlem family) and Ra (Latin American-Mediterranean family), as well as drug-susceptible isolates belonging to the same families and laboratory strain H37Rv for 48 hours in T-cell subsets by flow cytometry.

View Article and Find Full Text PDF

The role of CD16(-) and CD16(+) Mo subsets in human TB remains unknown. Our aim was to characterize Mo subsets from TB patients and to assess whether the inflammatory milieu from TB pleurisy modulate their phenotype and recruitment. We found an expansion of peripheral CD16(+) Mo that correlated with disease severity and with TNF-α plasma levels.

View Article and Find Full Text PDF

Tuberculous pleurisy allows the study of specific cells at the site of Mycobacterium tuberculosis infection. Among pleural lymphocytes, natural killer (NK) cells are a major source of interferon gamma (IFN-gamma), and their functions are regulated by activating and inhibitory receptors. Programmed death-1 (PD-1), programmed death ligand 1 (PD-L1), and programmed death ligand 2 (PD-L2) are recognized inhibitory receptors in adaptive immunity, but their role during innate immunity remains poorly understood.

View Article and Find Full Text PDF

During a chronic infection such as tuberculosis, the pool of tissue dendritic cells (DC) must be renewed by recruitment of both circulating DC progenitors and monocytes (Mo). However, the microenvironment of the inflammatory site affects Mo differentiation. As DC are critical for initiating a Mycobacterium tuberculosis-specific T-cell response, we argue that interference of M.

View Article and Find Full Text PDF

In Argentina, multidrug-resistant tuberculosis (MDR-TB) outbreaks emerged among hospitalized patients with AIDS in the early 1990s and thereafter disseminated to the immunocompetent community. Epidemiological, bacteriological, and genotyping data allowed the identification of certain MDR Mycobacterium tuberculosis outbreak strains, such as the so-called strain M of the Haarlem lineage and strain Ra of the Latin America and Mediterranean lineage. In the current study, we evaluated the immune responses induced by strains M and Ra in peripheral blood mononuclear cells from patients with active MDR-TB or fully drug-susceptible tuberculosis (S-TB) and in purified protein derivative-positive healthy controls (group N).

View Article and Find Full Text PDF

Tuberculous pleurisy, one of the most common manifestations of extrapulmonary tuberculosis, is characterized by a T-cell-mediated hypersensitivity reaction along with a Th1 immune profile. In this study, we investigated functional cross-talk among T and NK cells in human tuberculous pleurisy. We found that endogenously activated pleural fluid-derived NK cells express high ICAM-1 levels and induce T-cell activation ex vivo through ICAM-1.

View Article and Find Full Text PDF

Tuberculous pleurisy allows the study of human cells at the site of active Mycobacterium tuberculosis infection. In this study, we found that among pleural fluid (PF) lymphocytes, natural killer (NK) cells are a major source of early gamma interferon (IFN-gamma) upon M. tuberculosis stimulation, leading us to investigate the mechanisms and molecules involved in this process.

View Article and Find Full Text PDF

In the present study, we reported an attempt to improve the immunogenicity and protective capacity of the chimera BLSOmp31 using a different antigen delivery: DNA vaccination. Vaccination of BALB/c mice with the DNA vaccine coding for the chimera BLSOmp31 (pCIBLSOmp31) provided the best protection level against Brucella ovis, which was significantly higher than the given by the co-delivery of both plasmids coding for the whole proteins (pcDNABLS+pCIOmp31) and even higher than the control vaccine Rev.1.

View Article and Find Full Text PDF

Polymorphonuclear neutrophils (PMN) modulate the adaptive immune response through interactions with immature dendritic cells (iDC) while spontaneous apoptotic neutrophils PMNapo (PMNapo) may have an inhibitory effect on DC functions. We investigate the effect exerted by PMNapo in DC maturation and the role of Mycobacterium tuberculosis (Mtb)-induced PMNapo in the cross-presentation of mycobacterial antigens. We demonstrate that Mtb triggers the maturation of iDC while it is impaired by the presence of PMNapo, which abrogate Mtb-induced expression of costimulatory and HLA class II molecules, reducing IL-12 and IFN-gamma release by DC and partially inhibiting Mtb-driven lymphocyte proliferation.

View Article and Find Full Text PDF

The development of an effective subunit vaccine against brucellosis is a research area of intense interest. The enzyme lumazine synthase from Brucella spp. (BLS) is highly immunogenic, presumably due to its decameric arrangement and remarkable stability.

View Article and Find Full Text PDF

In the present study, we report an attempt to improve the immunogenicity of the Omp31 antigen by a DNA prime-protein boost immunization regimen. We immunized BALB/c mice with an Omp31 DNA vaccine (pCIOmp31) followed by boosting with recombinant Omp31 (rOmp31) in incomplete Freund's adjuvant and characterized the resulting immune responses and the protective efficacy against Brucella ovis and B. melitensis infection.

View Article and Find Full Text PDF

Although the role of natural killer (NK) cells in mycobacterial infections is unclear, it has been postulated that they contribute to protective immunity through the production of interferon (IFN)-gamma. In this study, we evaluate the effect of interleukin (IL)-10, IL-15 and IL-18 on NK lytic activity through the expression of CD16, CD11a and CD69 molecules and the induction of IFN-gamma production in patients with tuberculosis (TB) and healthy individuals (N). Our results showed an impairment of NK lytic activity and a gradual down-regulation of costimulatory and adhesion molecules on NK cells which were dependent on the severity of the disease.

View Article and Find Full Text PDF