Aim: Zinc is a key secondary messenger that can regulate multiple signalling pathways within cancer cells, thus its levels need to be strictly controlled. The Zrt, Irt-like protein (ZIP, SLC39A) family of zinc transporters increase cytosolic zinc from either extracellular or intracellular stores. This study examines the relevance of zinc transporters ZIP7 and ZIP6 as therapeutic targets in tamoxifen resistant (TAMR) breast cancer.
View Article and Find Full Text PDFZinc has been known to be essential for cell division for over 40 years but the molecular pathways involved remain elusive. Cellular zinc import across biological membranes necessitates the help of zinc transporters such as the SLC39A family of ZIP transporters. We have discovered a molecular process that explains why zinc is required for cell division, involving two highly regulated zinc transporters, as a heteromer of ZIP6 and ZIP10, providing the means of cellular zinc entry at a specific time of the cell cycle that initiates a pathway resulting in the onset of mitosis.
View Article and Find Full Text PDFZIP7, a member of the ZIP family of zinc importers, resides on the endoplasmic reticulum membrane and transports zinc from intracellular stores to the cytoplasm after activation by CK2 phosphorylation on two serine residues (S275 and S276). ZIP7 is known to be required for the growth of anti-hormone resistant breast cancer models, especially those with acquired tamoxifen resistance developed from MCF-7. Using our new pSSZIP7 antibody which only recognises activated ZIP7 (pZIP7), we have demonstrated that the hyperactivation of ZIP7 is prevalent in tamoxifen-resistant breast cancer cells.
View Article and Find Full Text PDFZinc is an important element that is gaining momentum as a potential target for cancer therapy. In recent years zinc has been accepted as a second messenger that is now recognized to be able to activate many signalling pathways within a few minutes of an extracellular stimulus by release of zinc(II) from intracellular stores. One of the major effects of this store release of zinc is to inhibit a multitude of tyrosine phosphatases which will prevent the inactivation of tyrosine kinases and hence, encourage further activation of tyrosine kinasedependent signalling pathways.
View Article and Find Full Text PDFThere is growing evidence that zinc and its transporters are involved in cell migration during development and in cancer. In the present study, we show that zinc transporter ZIP10 (SLC39A10) stimulates cell motility and proliferation, both in mammalian cells and in the zebrafish embryo. This is associated with inactivation of GSK (glycogen synthase kinase)-3α and -3β and down-regulation of E-cadherin (CDH1).
View Article and Find Full Text PDF