Exogenous cross-linking of soft collagenous tissues is a common method for biomaterial development and medical therapies. To enable improved applications through computational methods, physically realistic constitutive models are required. Yet, despite decades of research, development and clinical use, no such model exists.
View Article and Find Full Text PDFPurpose: Because of low soft-tissue contrast of cone beam computed tomography (CBCT), fiducial markers are often used for radiation therapy patient setup verification. For pancreatic cancer patients, biliary stents have been suggested as surrogate fiducials. Using intratumoral fiducials as standard for tumor position, this study aims to quantify the suitability of biliary stents for measuring interfractional and respiratory-induced position variations of pancreatic tumors.
View Article and Find Full Text PDFPurpose: The aim of this study was to quantify interfractional pancreatic position variation using fiducial markers visible on daily cone beam computed tomography (CBCT) scans. In addition, we analyzed possible migration of the markers to investigate their suitability for tumor localization.
Methods And Materials: For 13 pancreatic cancer patients with implanted Visicoil markers, CBCT scans were obtained before 17 to 25 fractions (300 CBCTs in total).
As the complete understanding of urinary bladder function requires knowledge of organ level deformations, we conducted ex vivo studies of surface strains of whole bladders during controlled filling. The surface strains derived from displacements of surface markers applied to the posterior surface of excised rat bladders were tracked under slow filling with pressure and volume simultaneously recorded in the passive and completely inactivated states (i.e.
View Article and Find Full Text PDFThe urinary bladder wall (UBW), which is composed of smooth muscle, collagen, and elastin, undergoes profound remodeling in response to changes in mechanical loading resulting from various pathologies. In our laboratory, we have observed the production of fibrillar elastin in the extracellular matrix (ECM), which makes the UBW a particularly attractive tissue to investigate smooth muscle tissue remodeling. In the present study, we explored the mechanical role that de novo elastin fibers play in altering UBW ECM mechanical behavior using a structural constitutive modeling approach.
View Article and Find Full Text PDFBackground: Spinal cord injuries (SCI) can lead to severe bladder pathologies associated with inflammation, fibrosis, and increased susceptibility to urinary tract infections. We sought to characterize the complex pathways of remodeling, inflammation, and infection in the urinary bladder at the level of the transcriptome in a rat model of SCI, using pathways analysis bioinformatics.
Methodology/principal Findings: Experimental data were obtained from the study of Nagatomi et al.
The collagen fiber alignment and biomechanical behavior of naturally occurring extracellular matrix (ECM) scaffolds are important considerations for the design of medical devices from these materials. Both should be considered in order to produce a device to meet tissue specific mechanical requirements (e.g.
View Article and Find Full Text PDFStudy Design: An experimental hydrogel model and a numerical mixture model were used to investigate why the disc herniates while osmotic pressure is decreasing.
Objective: To investigate the influence of decreasing osmotic pressure on the opening of cracks in the disc.
Summary Of Background Data: In the degeneration process, the disc changes structure (i.