Cantilever based scanning force sensors, which probe a specific tip-sample interaction through a functional tip coating, are limited by the material performance achievable in the coating process. In case of the wide spread magnetic force microscopy (MFM) technique, the magnetic performance of MFM tips, especially the response to magnetic fields and the coercivity, fall far behind the quality known from permanent magnet films prepared with optimized process conditions on appropriate substrates. We resolve this limitation by starting from an optimized thin film architecture - a highly anisotropic SmCo5 film grown epitaxially on MgO(110) substrates - from which a tip is separated by focused ion beam and is attached to a cantilever.
View Article and Find Full Text PDFWe present a comprehensive method for visualisation and quantification of the magnetic stray field of magnetic force microscopy (MFM) probes, applied to the particular case of custom-made multi-layered probes with controllable high/low magnetic moment states. The probes consist of two decoupled magnetic layers separated by a non-magnetic interlayer, which results in four stable magnetic states: ±ferromagnetic (FM) and ±antiferromagnetic (A-FM). Direct visualisation of the stray field surrounding the probe apex using electron holography convincingly demonstrates a striking difference in the spatial distribution and strength of the magnetic flux in FM and A-FM states.
View Article and Find Full Text PDF