The aim of this study was the identification of specific proteomic profiles, related to a restored cystic fibrosis transmembrane conductance regulator (CFTR) activity in cystic fibrosis (CF) leukocytes before and after ex vivo treatment with the potentiator VX770. We used leukocytes, isolated from CF patients carrying residual function mutations and eligible for Ivacaftor therapy, and performed CFTR activity together with proteomic analyses through micro-LC-MS. Bioinformatic analyses of the results obtained revealed the downregulation of proteins belonging to the leukocyte transendothelial migration and regulation of actin cytoskeleton pathways when CFTR activity was rescued by VX770 treatment.
View Article and Find Full Text PDFBackground: Acute recurrent pancreatitis (ARP) is characterized by episodes of acute pancreatitis in an otherwise normal gland. When no cause of ARP is identifiable, the diagnosis of "idiopathic" ARP is given. Mutations in the cystic fibrosis transmembrane conductance regulator () gene increase the risk of ARP by 3- to 4-times compared to the general population, while cystic fibrosis (CF) patients present with a 40- to 80-times higher risk of developing pancreatitis.
View Article and Find Full Text PDF