Publications by authors named "Silvia Smaldone"

A disproportionate tall stature is the most evident manifestation in Marfan syndrome (MFS), a multisystem condition caused by mutations in the extracellular protein and TGFβ modulator, fibrillin-1. Unlike cardiovascular manifestations, there has been little effort devoted to unravel the molecular mechanism responsible for long bone overgrowth in MFS. By combining the Cre-LoxP recombination system with metatarsal bone cultures, here we identify the outer layer of the perichondrium as the tissue responsible for long bone overgrowth in MFS mice.

View Article and Find Full Text PDF

Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis.

View Article and Find Full Text PDF

Cancer is one of the most common causes of death among adults. Chemotherapy is crucial in determining patient survival and quality of life. However, the development of multidrug resistance (MDR) continues to pose a significant challenge in the management of cancer.

View Article and Find Full Text PDF

We have recently demonstrated that fibrillin-1 assemblies regulate the fate of skeletal stem cells (aka, mesenchymal stem cells [MSCs]) by modulating TGFβ activity within the microenvironment of adult bone marrow niches. Since MSCs can also influence hematopoietic stem cell (HSC) activities, here we investigated adult hematopoiesis in mice with Cre-mediated inactivation of the fibrillin-1 (Fbn1) gene in the mesenchyme of the forming limbs (Fbn1(Prx1-/-) mice). Analyses of 3-month-old Fbn1(Prx1-/-) mice revealed a statistically significant increase of circulating red blood cells, which a differentiation assay correlated with augmented erythropoiesis.

View Article and Find Full Text PDF

The severe skeletal abnormalities associated with Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA) underscore the notion that fibrillin assemblies (microfibrils and elastic fibers) play a critical role in bone formation and function in spite of representing a low abundance component of skeletal matrices. Studies of MFS and CCA mice have correlated the skeletal phenotypes of these mutant animals with distinct pathophysiological mechanisms that reflect the contextual contribution of fibrillin-1 and -2 scaffolds to TGFβ and BMP signaling during bone patterning, growth and metabolism. Illustrative examples include the unique role of fibrillin-2 in regulating BMP-dependent limb patterning and the distinct impact of the two fibrillin proteins on the commitment and differentiation of marrow mesenchymal stem cells.

View Article and Find Full Text PDF

A full understanding of the microenvironmental factors that control the activities of skeletal stem cells (also known as mesenchymal stem cells [MSCs]) in the adult bone marrow holds great promise for developing new therapeutic strategies to mitigate age-related diseases of bone and cartilage degeneration. Bone loss is an understudied manifestation of Marfan syndrome, a multisystem disease associated with mutations in the extracellular matrix protein and TGFβ modulator fibrillin-1. Here we demonstrate that progressive loss of cancellous bone in mice with limbs deficient for fibrillin-1 (Fbn1(Prx1-/-) mice) is accounted for by premature depletion of MSCs and osteoprogenitor cells combined with constitutively enhanced bone resorption.

View Article and Find Full Text PDF

Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues.

View Article and Find Full Text PDF

Objective: Studies of mice with mild Marfan syndrome (MFS) have correlated the development of thoracic aortic aneurysm (TAA) with improper stimulation of noncanonical (Erk-mediated) TGFβ signaling by the angiotensin type I receptor (AT1r). This correlation was largely based on comparable TAA modifications by either systemic TGFβ neutralization or AT1r antagonism. However, subsequent investigations have called into question some key aspects of this mechanism of arterial disease in MFS.

View Article and Find Full Text PDF

EHD {EH [Eps15 (epidermal growth factor receptor substrate 15) homology]-domain-containing} proteins participate in several endocytic events, such as the internalization and the recycling processes. There are four EHD proteins in mammalian cells, EHD1-EHD4, each with diverse roles in the recycling pathway of endocytosis. EHD2 is a plasma-membrane-associated member of the EHD family that regulates internalization.

View Article and Find Full Text PDF

Loss-of-function experiments in mice have yielded invaluable mechanistic insights into the pathogenesis of Marfan syndrome (MFS) and implicitly, into the multiple roles fibrillin-1 microfibrils play in the developing and adult organism. Unfortunately, neonatal death from aortic complications of mice lacking fibrillin-1 (Fbn1(-/-) mice) has limited the scope of these studies. Here, we report the creation of a conditional mutant allele (Fbn1(fneo) ) that contains loxP sites bordering exon1 of Fbn1 and an frt-flanked neo expression cassette downstream of it.

View Article and Find Full Text PDF

Fibrillin-1 and fibrillin-2 are structural components of the extracellular matrix which are also involved in modulating local TGFβ and BMP bioavailability. Loss of fibrillin-1 or fibrillin-2 is associated with perturbed osteoblast maturation principally as the result of unbalanced TGFβ and BMP signaling. Here, we demonstrated that stable expression of small hairpin RNAs against fibrillin-1(Fbn1) or fibrillin-2 (Fbn2) transcripts in the clonal osteoprogenitor cell line Kusa-A1 led to the same phenotypic and molecular manifestations as germline Fbn1- or Fbn2-null mutations in primary calvarial osteoblast cultures.

View Article and Find Full Text PDF

Background: Scleroderma (systemic sclerosis; SSc) is a clinically heterogeneous and often lethal acquired disorder of the connective tissue that is characterized by vascular, immune/inflammatory and fibrotic manifestations. Tissue fibrosis is the main cause of morbidity and mortality in SSc and an unmet medical challenge, mostly because of our limited understanding of the molecular factors and signalling events that trigger and sustain disease progression. Recent evidence has correlated skin fibrosis in SSc with stabilization of proto-oncogene Ha-Ras secondary to auto-antibody stimulation of reactive oxygen species production.

View Article and Find Full Text PDF

The extracellular matrix (ECM) plays a key role in tissue formation, homeostasis and repair, mutations in ECM components have catastrophic consequences for organ function and therefore, for the fitness and survival of the organism. Collagen, fibrillin and elastin polymers represent the architectural scaffolds that impart specific mechanic properties to tissues and organs. Fibrillin assemblies (microfibrils) have the additional function of distributing, concentrating and modulating local transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) signals that regulate a plethora of cellular activities, including ECM formation and remodeling.

View Article and Find Full Text PDF

Reduced bone mineral density (osteopenia) is a poorly characterized manifestation of pediatric and adult patients afflicted with Marfan syndrome (MFS), a multisystem disorder caused by structural or quantitative defects in fibrillin-1 that perturb tissue integrity and TGFβ bioavailability. Here we report that mice with progressively severe MFS (Fbn1(mgR/mgR) mice) develop osteopenia associated with normal osteoblast differentiation and bone formation. In vivo and ex vivo experiments, respectively, revealed that adult Fbn1(mgR/mgR) mice respond more strongly to locally induced osteolysis and that Fbn1(mgR/mgR) osteoblasts stimulate pre-osteoclast differentiation more than wild-type cells.

View Article and Find Full Text PDF

Extracellular regulation of signaling by transforming growth factor (TGF)-β family members is emerging as a key aspect of organ formation and tissue remodeling. In this study, we demonstrate that fibrillin-1 and -2, the structural components of extracellular microfibrils, differentially regulate TGF-β and bone morphogenetic protein (BMP) bioavailability in bone. Fibrillin-2-null (Fbn2(-/-)) mice display a low bone mass phenotype that is associated with reduced bone formation in vivo and impaired osteoblast maturation in vitro.

View Article and Find Full Text PDF

Mutations in fibrillin-1 or fibrillin-2, the major structural components of extracellular microfibrils, cause pleiotropic manifestations in Marfan syndrome and congenital contractural arachnodactyly, respectively. We recently found that fibrillin-1 and fibrillin-2 control bone formation by regulating osteoblast differentiation through the differential modulation of endogenous TGFβ and bone morphogenetic protein signals. Here, we describe in vivo and ex vivo experiments that implicate the fibrillins as negative regulators of bone resorption.

View Article and Find Full Text PDF

Systemic and local factors regulate the activity of osteoblasts and osteoclasts during bone growth and remodeling by modulating a complex array of intracellular signaling events. Recent genetic evidence implicates extracellular fibrillin assemblies (microfibrils and elastic fibers) in imparting contextual specificity to endogenous transforming growth factor-beta and bone morphogenetic protein ligands in the forming and mature skeleton. The evidence is based on the characterization of the cellular and molecular mechanisms responsible for the unique bone manifestations that characterize mouse models of Marfan syndrome and congenital contractural arachnodactyly.

View Article and Find Full Text PDF

Excessive transforming growth factor-beta (TGF-beta) signaling characterizes the progression of aortic aneurysm in mouse models of Marfan syndrome, a systemic disorder of the connective tissue that is caused by mutations in the gene encoding the extracellular matrix protein fibrillin-1. Fibrillin-1 mutations are believed to promote abnormal Smad2/3 signaling by impairing the sequestration of latent TGF-beta complexes into the extracellular matrix. Here we report that promiscuous Smad2/3 signaling is the cell-autonomous phenotype of primary cultures of vascular smooth muscle cells (VSMC) explanted from the thoracic aortas of Fbn1 mutant mice with either neonatal onset or progressively severe aortic aneurysm.

View Article and Find Full Text PDF

Fibrillin-rich microfibrils have emerged recently as an informative model system in which to study fundamental questions related to extracellular matrix biology and connective tissue pathophysiology. As a result, these studies have yielded novel clinical concepts and promising therapeutic strategies. These achievements have been based on the realization from studies of genetically engineered mice that mutations in fibrillin-rich microfibrils impair both the structural integrity of connective tissues and signaling events by TGF-beta/BMP superfamily members.

View Article and Find Full Text PDF

MoKA is a novel F-box containing protein that interacts with and stimulates the activity of transcription factor KLF7, a regulator of neuronal differentiation. MoKA accumulates throughout the cell and predominantly in the cytosol, consistent with the presence of several putative nuclear localization and export signals (NLSs and NESs). The present study was designed to refine the identity and location of the sequences responsible for MoKA intracellular shuttling and transcriptional activity.

View Article and Find Full Text PDF

The Krüppel-like transcription factors (KLFs) are important regulators of cell proliferation and differentiation in several different organ systems. The mouse Klf7 gene is strongly active in postmitotic neuroblasts of the developing nervous system, and the corresponding protein stimulates transcription of the cyclin-dependent kinase inhibitor p21waf/cip gene. Here we report that loss of KLF7 activity in mice leads to neonatal lethality and a complex phenotype which is associated with deficits in neurite outgrowth and axonal misprojection at selected anatomical locations of the nervous system.

View Article and Find Full Text PDF

KLF7, a member of the Krüppel-like transcription factor family, is believed to regulate neurogenesis and cell cycle progression. Here, a yeast two-hybrid screen for KLF7 cofactors in the developing nervous system identified a novel 140-kDa protein named MoKA, for modulator of KLF7 activity. Interaction between MoKA and KLF7 was confirmed by the in vitro glutathione S-transferase pull-down assay and by coimmunoprecipitation of the proteins overexpressed in mammalian cells.

View Article and Find Full Text PDF

The Krüppel-like transcription factors (KLFs) represent a family of 15 different zinc finger proteins of the C(2)H(2) type that are involved in vertebrate development and which control cell proliferation, growth and differentiation. Structural-functional considerations have segregated KLF6 and KLF7 into a phylogenetically distinct group. Here we report the identification of Luna, the Drosophila progenitor of the mammalian KLF6/KLF7 group.

View Article and Find Full Text PDF

Hu-Surf5 is included within the Surfeit locus, a cluster of six genes originally identified in mouse. In the present study, we have cloned and characterized the Hu-Surf5 gene and its mRNA multiple transcripts. Comparison of the most abundant cDNA and genomic sequence shows that the Hu-Surf5 is spread over a region of approximately 7.

View Article and Find Full Text PDF