Publications by authors named "Silvia Sfameni"

In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability.

View Article and Find Full Text PDF

This article reports on the synthesis of an innovative smart polymer, P5-QPDMAEMA, opportunely developed with the aim of combining the responsiveness of PDMAEMA polymer and the host-guest properties of covalently linked pillar[5]arenes. Thanks to a traditional Non-Induced Phase Separation (NIPS) process performed at various coagulation pH, the blending of P5-QPDMAEMA with polyethersulfone gave rise to the formation of functional beads for the removal of organic dyes in water. Adsorption tests are carried out on all the produced blend-based beads by employing two representative dyes, the cationic methylene blue (MB), and the anionic methyl orange (MO).

View Article and Find Full Text PDF

Rheological and mechanical comparative tests of the new AquaSun antifouling sol-gel coating coated on shipbuilding steel compared to a commercial silyl acrylate antifouling top coat containing cuprous oxide and copper pyrithione show further evidence of the practical viability of this multifunctional coating for the protection of the immersed surfaces from biofouling. AquaSun is a less rigid or less viscous material than commercial top coat but more adherent to the steel substrate. These results support further investigation of this multifunctional sol-gel coating as an eco-friendly antifouling paint.

View Article and Find Full Text PDF

To meet modern society's requirements for sustainability and environmental protection, innovative and smart surface coatings are continually being developed to improve or impart surface functional qualities and protective features. These needs regard numerous different sectors, such as cultural heritage, building, naval, automotive, environmental remediation and textiles. In this regard, researchers and nanotechnology are therefore mostly devoted to the development of new and smart nanostructured finishings and coatings featuring different implemented properties, such as anti-vegetative or antibacterial, hydrophobic, anti-stain, fire retardant, controlled release of drugs, detection of molecules and mechanical resistance.

View Article and Find Full Text PDF

Polyester fibers are widely employed in a multitude of sectors and applications from the technical textiles to everyday life thanks to their durability, strength, and flexibility. Despite these advantages, polyester lacks in dyeability, adhesion of coating, hydrophilicity, and it is characterized by a low wettability respect to natural fibers. On this regard, beyond the harmful hydrophobic textile finishings of polyester fabrics containing fluorine-compounds, and in order to avoid pre-treatments, such as laser irradiation to improve their surface properties, research is moving towards the development of fluorine-free and safer coatings.

View Article and Find Full Text PDF

Water quality and disposability are among the main challenges that governments and societies will outside during the next years due to their close relationship to population growth and urbanization and their direct influence on the environment and socio-economic development. Potable water suitable for human consumption is a key resource that, unfortunately, is strongly limited by anthropogenic pollution and climate change. In this regard, new groups of compounds, referred to as emerging contaminants, represent a risk to human health and living species; they have already been identified in water bodies as a result of increased industrialization.

View Article and Find Full Text PDF

The textile-finishing industry, is one of the main sources of persistent organic pollutants in water; in this regard, it is necessary to develop and employ new sustainable approaches for fabric finishing and treatment. This research study shows the development of an efficient and eco-friendly procedure to form highly hydrophobic surfaces on cotton fabrics using different modified silica sols. In particular, the formation of highly hydrophobic surfaces on cotton fabrics was studied by using a two-step treatment procedure, i.

View Article and Find Full Text PDF

In the past few years, corrosion protection of metal materials has become a global challenge, due to its great economic importance. For this reason, various methods have been developed to inhibit the corrosion process, such as surface treatment approaches, by employing corrosion inhibitors through the deposition of opportunely designed functional coatings, employed to preserve from corrosion damages metallic substrates. Recently, among these techniques and in order to avoid the toxic chromate-based pre-treatment coatings, silane-based coatings and films loaded with organic and inorganic corrosion inhibitors have been widely used in corrosion mitigation water-based surface treatment.

View Article and Find Full Text PDF

Biofouling has destructive effects on shipping and leisure vessels, thus producing severe problems for marine and naval sectors due to corrosion with consequent elevated fuel consumption and higher maintenance costs. The development of anti-fouling or fouling release coatings creates deterrent surfaces that prevent the initial settlement of microorganisms. In this regard, new silica-based materials were prepared using two alkoxysilane cross-linkers containing epoxy and amine groups (i.

View Article and Find Full Text PDF

The need to ensure adequate antifouling protection of the hull in the naval sector led to the development of real painting cycles, which involve the spreading of three layers of polymeric material on the hull surface exposed to the marine environment, specifically defined as primer, tie coat and final topcoat. It is already well known that coatings based on suitable silanes provide an efficient and non-toxic approach for the hydrophobic and antifouling/fouling release treatment of surfaces. In the present work, functional hydrophobic hybrid silica-based coatings (topcoats) were developed by using sol-gel technology and deposited on surfaces with the "doctor blade" method.

View Article and Find Full Text PDF

In recent years thanks to the Internet of Things (IoT), the demand for the development of miniaturized and wearable sensors has skyrocketed. Among them, novel sensors for wearable medical devices are mostly needed. The aim of this review is to summarize the advancements in this field from current points of view, focusing on sensors embedded into textile fabrics.

View Article and Find Full Text PDF

World population growth, with the consequent consumption of primary resources and production of waste, is progressively and seriously increasing the impact of anthropic activities on the environment and ecosystems. Environmental pollution deriving from anthropogenic activities is nowadays a serious problem that afflicts our planet and that cannot be neglected. In this regard, one of the most challenging tasks of the 21st century is to develop new eco-friendly, sustainable and economically-sound technologies to remediate the environment from pollutants.

View Article and Find Full Text PDF

Bacterial colonization of surfaces is the leading cause of deterioration and contaminations. Fouling and bacterial settlement led to damaged coatings, allowing microorganisms to fracture and reach the inner section. Therefore, effective treatment of surface damaged material is helpful to detach bio-settlement from the surface and prevent deterioration.

View Article and Find Full Text PDF

Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods.

View Article and Find Full Text PDF

This review presents current literature on different nanocomposite coatings and surface finishing for textiles, and in particular this study has focused on smart materials, drug-delivery systems, industrial, antifouling and nano/ultrafiltration membrane coatings. Each of these nanostructured coatings shows interesting properties for different fields of application. In this review, particular attention is paid to the synthesis and the consequent physico-chemical characteristics of each coating and, therefore, to the different parameters that influence the substrate deposition process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: