Purpose: We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle.
Methods: Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65% of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy.
Metabolic stress is believed to constitute an important signal for training-induced adjustments of gene expression and oxidative capacity in skeletal muscle. We hypothesized that the effects of endurance training on expression of muscle-relevant transcripts and ultrastructure would be specifically modified by a hypoxia complement during exercise due to enhanced glycolytic strain. Endurance training of untrained male subjects in conditions of hypoxia increased subsarcolemmal mitochondrial density in the recruited vastus lateralis muscle and power output in hypoxia more than training in normoxia, i.
View Article and Find Full Text PDFClin Orthop Relat Res
August 2009
Unlabelled: The posterior inclination of the tibial plateau, which is referred to as posterior tibial slope, is determined routinely on lateral radiographs. However, radiographically, it is not always possible to reliably recognize the lateral plateau, making a separate assessment of the medial and lateral plateaus difficult. We propose a technique to measure the plateaus separately by defining a tibial longitudinal axis on a conventional MRI.
View Article and Find Full Text PDFClin Orthop Relat Res
February 2009
Skeletal muscle atrophy and fatty infiltration develop after tendon tearing. The extent of atrophy serves as one prognostic factor for the outcome of surgical repair of rotator cuff tendon tears. We asked whether mRNA of genes involved in regulation of degradative processes leading to muscle atrophy, ie, FOXOs, MSTN, calpains, cathepsins, and transcripts of the ubiquitin-proteasome pathway, are overexpressed in the supraspinatus muscle in patients with and without rotator cuff tears.
View Article and Find Full Text PDFBackground: Osteosarcoma (OS) is an aggressive bone malignancy that primarily affects children and adolescents. Patients with metastatic disease at diagnosis have only a 20% survival rate. The poor survival rate of these patients is largely due to their lack of responsiveness to chemotherapy.
View Article and Find Full Text PDFThe muscle has a wide range of possibilities to adapt its phenotype. Repetitive submaximal concentric exercise (i.e.
View Article and Find Full Text PDFWe hypothesized that in untrained individuals (n=6) a single bout of ergometer endurance exercise provokes a concerted response of muscle transcripts towards a slow-oxidative muscle phenotype over a 24-h period. We further hypothesized this response during recovery to be attenuated after six weeks of endurance training. We monitored the expression profile of 220 selected transcripts in muscle biopsies before as well as 1, 8, and 24 h after a 30-min near-maximal bout of exercise.
View Article and Find Full Text PDFReprogramming of gene expression has been recognized as a main instructive modality for the adjustments of tissues to various kinds of stress. The recent application of gene expression profiling has provided a powerful tool to elucidate the molecular pathways underlying such tissue remodeling. However, the biological interpretations of expression profiling results critically depend on normalization of transcript signals to mRNA standards before statistical evaluation.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2005
The hypothesis was tested that differential, coregulated transcriptional adaptations of various cellular pathways would occur early with increased mechanical loading of atrophied skeletal muscle and relate to concurrent damage of muscle fibers. Atrophy and slow-to-fast fiber transformation of rat soleus muscle was provoked by 14 days of hindlimb suspension (HS). Subsequent reloading of hindlimbs caused a fourfold increase in the percentage of muscle fibers, demonstrating endomysial tenascin-C staining.
View Article and Find Full Text PDFThis study investigated the use of the hindlimb suspension (HS) and reloading model of mice for the mapping of ultrastructural and gene expressional alterations underlying load-dependent muscular adaptations. Mice were hindlimb suspended for 7 days or kept as controls (n = 12). Soleus muscles were harvested after HS (HS7, n = 23) or after resuming ambulatory cage activity (reloading) for either 1 day (R1, n = 13) or 7 days (R7, n = 9).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2003
The hypothesis was tested that mechanical loading, induced by hindlimb suspension and subsequent reloading, affects expression of the basement membrane components tenascin-C and fibronectin in the belly portion of rat soleus muscle. One day of reloading, but not the previous 14 days of hindlimb suspension, led to ectopic accumulation of tenascin-C and an increase of fibronectin in the endomysium of a proportion (8 and 15%) of muscle fibers. Large increases of tenascin-C (40-fold) and fibronectin (7-fold) mRNA within 1 day of reloading indicates the involvement of pretranslational mechanisms in tenascin-C and fibronectin accumulation.
View Article and Find Full Text PDF