Alpha oscillations are a distinctive feature of the awake resting state of the human brain. However, their functional role in resting-state neuronal dynamics remains poorly understood. Here we show that, during resting wakefulness, alpha oscillations drive an alternation of attenuation and amplification bouts in neural activity.
View Article and Find Full Text PDFSleep plays a key role in preserving brain function, keeping brain networks in a state that ensures optimal computation. Empirical evidence indicates that this state is consistent with criticality, where scale-free neuronal avalanches emerge. However, the connection between sleep architecture and brain tuning to criticality remains poorly understood.
View Article and Find Full Text PDFIntroduction: Difficulties faced while walking are common symptoms after stroke, significantly reducing the quality of life. Walking recovery is therefore one of the main priorities of rehabilitation. Wearable powered exoskeletons have been developed to provide lower limb assistance and enable training for persons with gait impairments by using typical physiological movement patterns.
View Article and Find Full Text PDFFor decades, powered exoskeletons have been considered for possible employment in rehabilitation and personal use. Yet, these devices are still far from addressing the needs of users. Here, we introduce TWIN, a novel modular lower limb exoskeleton for personal use of spinal-cord injury (SCI) subjects.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
November 2021
Myoelectrically Controlled Functional Electrical Stimulation (MeCFES) has proven to be a useful tool in the rehabilitation of the hemiplegic arm. This paper reports the steps involved in the development of a wearable MeCFES device (FITFES) through a user-centered design. We defined the minimal viable features and functionalities requirements for the device design from a questionnaire-based survey among physiotherapists with experience in functional electrical stimulation.
View Article and Find Full Text PDFMany experimental results, both in vivo and in vitro, support the idea that the brain cortex operates near a critical point and at the same time works as a reservoir of precise spatiotemporal patterns. However, the mechanism at the basis of these observations is still not clear. In this paper we introduce a model which combines both these features, showing that scale-free avalanches are the signature of a system posed near the spinodal line of a first-order transition, with many spatiotemporal patterns stored as dynamical metastable attractors.
View Article and Find Full Text PDFNetworks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena.
View Article and Find Full Text PDFComplex collective activity emerges spontaneously in cortical circuits in vivo and in vitro, such as alternation of up and down states, precise spatiotemporal patterns replay, and power law scaling of neural avalanches. We focus on such critical features observed in cortical slices. We study spontaneous dynamics emerging in noisy recurrent networks of spiking neurons with sparse structured connectivity.
View Article and Find Full Text PDFWe model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible.
View Article and Find Full Text PDFWe consider a network of leaky integrate and fire neurons, whose learning mechanism is based on the Spike-Timing-Dependent Plasticity. The spontaneous temporal dynamic of the system is studied, including its storage and replay properties, when a Poissonian noise is added to the post-synaptic potential of the units. The temporal patterns stored in the network are periodic spatiotemporal patterns of spikes.
View Article and Find Full Text PDFWe study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity.
View Article and Find Full Text PDFWe study the storage and retrieval of phase-coded patterns as stable dynamical attractors in recurrent neural networks, for both an analog and a integrate and fire spiking model. The synaptic strength is determined by a learning rule based on spike-time-dependent plasticity, with an asymmetric time window depending on the relative timing between pre and postsynaptic activity. We store multiple patterns and study the network capacity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2007
Incorporating the spike-timing-dependent synaptic plasticity (STDP) into a learning rule, we study spatiotemporal learning in analog neural networks. First, we study learning of a finite number of periodic spatiotemporal patterns by deriving the dynamics of the order parameters. When a pattern is retrieved successfully, the order parameters exhibit periodic oscillation.
View Article and Find Full Text PDFIn this paper, we propose an iterative learning rule that allows the imprinting of correlated oscillatory patterns in a model of the hippocampus able to work as an associative memory for oscillatory spatio-temporal patterns. We analyze the dynamics in the Fourier domain, showing how the network selectively amplify or distort the Fourier components of the input, in a manner which depends on the imprinted patterns. We also prove that the proposed iterative local rule converges to the pseudo-inverse rule generalized to oscillatory patterns.
View Article and Find Full Text PDFWe show that a model of the hippocampus introduced recently by Scarpetta et al. (2002, Neural Computation 14(10):2371-2396) explains the theta phase precession phenomena. In our model, the theta phase precession comes out as a consequence of the associative-memory-like network dynamics, i.
View Article and Find Full Text PDFRecently Phys. Rev. E 64, 011920 (2001)]; Phys.
View Article and Find Full Text PDFWe analyze the dynamics of the neural circuit of the lamprey central pattern generator. This analysis provides insight into how neural interactions form oscillators and enable spontaneous oscillations in a network of damped oscillators, which were not apparent in previous simulations or abstract phase oscillator models. We also show how the different behavior regimes (characterized by phase and amplitude relationships between oscillators) of forward or backward swimming, and turning, can be controlled using the neural connection strengths and external inputs.
View Article and Find Full Text PDFWe introduce a model of generalized Hebbian learning and retrieval in oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. Recent experiments have shown that synaptic plasticity depends on spike timing, especially on synapses from excitatory pyramidal cells, in hippocampus, and in sensory and cerebellar cortex. Here we study how such plasticity can be used to form memories and input representations when the neural dynamics are oscillatory, as is common in the brain (particularly in the hippocampus and olfactory cortex).
View Article and Find Full Text PDF