Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging plant pathogen, fast spreading in Asian and Mediterranean regions, and is considered the most harmful geminivirus of cucurbits in the Mediterranean. ToLCNDV infects several plant and crop species from a range of families, including Solanaceae, Cucurbitaceae, Fabaceae, Malvaceae and Euphorbiaceae. Up to now, protection from ToLCNDV infection has been achieved mainly by RNAi-mediated transgenic resistance, and non-transgenic fast-developing approaches are an urgent need.
View Article and Find Full Text PDFMetaviridae is a family of reverse-transcribing viruses, closely related to retroviruses; they exist within their host's DNA as transposable elements. Transposable element study requires the use of specialized tools, in part because of their repetitive nature. By combining data from transcript RNA-Seq, small RNA-Seq, and parallel analysis of RNA ends-Seq from grapevine somatic embryos, we set up a bioinformatics flowchart that could be able to assemble and identify transposable elements.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of non-coding molecules involved in the regulation of a variety of biological processes. They have been identified and characterized in several plant species, but only limited data are available for L., one of the most promising bioenergy crops.
View Article and Find Full Text PDFUsing Human Gene Expression Microarrays (Agilent) technologies, we investigated changes of the level of gene expression in peripheral blood mononuclear cells of healthy subjects after 21 days of fresh table grape-rich diet and after an additional 28-day washout. Several hundreds of genes were differentially expressed after grape intake or after washout. The functional analysis of these genes detected significant changes in key processes such as inflammation and immunity, thrombosis, DNA and protein repair, autophagy and mitochondrial biogenesis.
View Article and Find Full Text PDFThe potential of Arundo donax to grow in degraded soils, characterized by excess of salinity (Na+), and phosphorus deficiency (-P) or excess (+P) also coupled with salinity (+NaP), was investigated by combining in vivo plant phenotyping, quantification of metabolites and ultrastructural imaging of leaves with a transcriptome-wide screening. Photosynthesis and growth were impaired by + Na, -P and + NaP. While + Na caused stomatal closure, enhanced biosynthesis of carotenoids, sucrose and isoprene and impaired anatomy of cell walls, +P negatively affected starch production and isoprene emission, and damaged chloroplasts.
View Article and Find Full Text PDFGlobal population forecasts dictate a rapid adoption of multifaceted approaches to fulfill increasing food requirements, ameliorate food dietary value and security using sustainable and economically feasible agricultural processes. Plant pathogens induce up to 25% losses in vegetable crops and their early detection would contribute to limit their spread and economic impact. As an alternative to time-consuming, destructive, and expensive diagnostic procedures, such as immunological assays and nucleic acid-based techniques, Raman spectroscopy (RS) is a nondestructive rapid technique that generates a chemical fingerprinting of a sample, at low operating costs.
View Article and Find Full Text PDF