Publications by authors named "Silvia Romero-Tamayo"

The Apoptosis-Inducing Factor (AIF) is a moonlighting flavoenzyme involved in the assembly of mitochondrial respiratory complexes in healthy cells, but also able to trigger DNA cleavage and parthanatos. Upon apoptotic-stimuli, AIF redistributes from the mitochondria to the nucleus, where upon association with other proteins such as endonuclease CypA and histone H2AX, it is proposed to organize a DNA-degradosome complex. In this work, we provide evidence for the molecular assembly of this complex as well as for the cooperative effects among its protein components to degrade genomic DNA into large fragments.

View Article and Find Full Text PDF

The human apoptosis-inducing factor (hAIF) is a moonlight flavoprotein involved in mitochondrial respiratory complex assembly and caspase-independent programmed cell death. These functions might be modulated by its redox-linked structural transition that enables hAIF to act as a NAD(H/) redox sensor. Upon reduction with NADH, hAIF undergoes a conformational reorganization in two specific insertions-the flexible regulatory C-loop and the 190-202 -harpin-promoting protein dimerization and the stabilization of a long-life charge transfer complex (CTC) that modulates its monomer-dimer equilibrium and its protein interaction network in healthy mitochondria.

View Article and Find Full Text PDF

The human apoptosis-inducing factor (hAIF) supports OXPHOS biogenesis and programmed cell death, with missense mutations producing neurodegenerative phenotypes. hAIF senses the redox environment of cellular compartments, stabilizing a charge transfer complex (CTC) dimer that modulates the protein interaction network. In this context, we aimed to evaluate the subcellular pH, CTC formation, and pathogenic mutations effects on hAIF stability, and a thermal denaturation high-throughput screening (HTS) assay to discover AIF binders.

View Article and Find Full Text PDF