Publications by authors named "Silvia R da Costa"

The acinar epithelial cells of the lacrimal gland are responsible for the production, packaging and regulated exocytosis of tear proteins into ocular surface fluid. This review summarizes new findings on the mechanisms of exocytosis in these cells. Participating proteins are discussed within the context of different categories of trafficking effectors including targeting and specificity factors (rabs, SNAREs) and transport factors (microtubules, actin filaments and motor proteins).

View Article and Find Full Text PDF

Lacrimal glands of male NOD and BALB/c mice have very small, pleomorphic acinar lumens. Acini contain isolated zones of highly complex cell surface interdigitations at the basal surface, sometimes occurring between acinar and myoepithelial cells. In NOD mice, cytological abnormalities, including mitochondrial deterioration, pleomorphic and heterogeneous cytoplasmic vacuoles, and lipid accumulation are evident within acinar cells at 1 month.

View Article and Find Full Text PDF

The lacrimal glands of male NOD mice exhibit many of the features of the human lacrimal gland in patients afflicted with the autoimmune disease, Sjögren's syndrome, including loss of secretory functions and lymphocytic infiltration into the lacrimal gland. To elucidate the early changes in the secretory pathway associated with development of Sjögren's syndrome, we investigated the organization of the exocytotic pathway in lacrimal glands of age-matched male BALB/c and NOD mice. Cryosections from lacrimal glands from 1 and 4 month male BALB/c and NOD mice were processed for confocal fluorescence and electron microscopic evaluation of different participants in exocytosis.

View Article and Find Full Text PDF

The aim of this review is to introduce the advances made over the past several years regarding the participation of actin and actin-associated proteins in clathrin-mediated endocytosis in simple cell models, and then to consider the evidence for the involvement of these effectors in apical clathrin-mediated endocytosis in epithelial cells. Basic mechanisms of clathrin-mediated endocytosis are initially addressed, followed by a detailed description of the actin cytoskeleton: its organization, function and, most importantly, the essential role played by proteins and signaling pathways responsible for the regulation of actin filament dynamics. Our focus then shifts to the GTPase, dynamin and its pivotal role as a bridge between various components of the clathrin endocytic machinery and the actin cytoskeleton.

View Article and Find Full Text PDF

In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis.

View Article and Find Full Text PDF

A major function of the acinar cells of the lacrimal gland is the production and stimulated release of tear proteins into ocular surface fluid. We investigate the participation of cytoplasmic dynein in carbachol-stimulated traffic to the apical plasma membrane in primary rabbit lacrimal acinar epithelial cells. Confocal fluorescence microscopy revealed a major carbachol-induced, microtubule-dependent recruitment of cytoplasmic dynein and the dynactin complex into the subapical region.

View Article and Find Full Text PDF