Publications by authors named "Silvia Pioli"

Article Synopsis
  • Traditional wastewater treatment plants primarily use activated sludge (AS) processes, which have significant drawbacks like high energy usage, excess sludge production, and greenhouse gas emissions.
  • The study explores using microalgal-bacterial consortia (MBC) as a promising alternative method, which leads to lower energy consumption, reduced emissions, and improved water sanitation.
  • The new photo-sequencing batch reactor (PSBR) exhibited over 95% ammonium removal, enhanced pathogen removal, and increased efficiency in nitrogen removal through more effective microbial flocs, positioning it as a viable alternative to traditional AS systems.
View Article and Find Full Text PDF

We investigated the changes in microbial community diversities and functions in natural downed wood at different decay stages in a natural oak forest in the Italian Alps, through metagenomics analysis and in vitro analysis. Alfa diversity of bacterial communities was affected by the decay stage and log characteristics, while beta diversity was mainly driven by log diameter. Fungal and archaeal beta diversities were affected by the size of the sampled wood (log diameter), although, fungi were prominently driven by wood decay stage.

View Article and Find Full Text PDF

Implementation of onsite bioremediation technologies is essential for textile industries due to rising concerns in terms of water resources and quality. Partial nitritation-anaerobic ammonium oxidation (PN/A) processes emerged as a valid, but unexplored, solution. In this study, the performance of a PN/A pilot-scale (9 m) sequencing batch reactor treating digital textile printing wastewater (10-40 m d) was monitored by computing nitrogen (N) removal rate and efficiencies.

View Article and Find Full Text PDF

The amount of nitrogen (N) deposition onto forests has globally increased and is expected to double by 2050, mostly because of fertilizer production and fossil fuel burning. Several studies have already investigated the effects of N depositions in forest soils, highlighting negative consequences on plant biodiversity and the associated biota. Nevertheless, the impact of N aerial inputs deposited directly on the tree canopy is still unexplored.

View Article and Find Full Text PDF

Microbes drive leaf litter decomposition, and their communities are adapted to the local vegetation providing that litter. However, whether these local microbial communities confer a significant home-field advantage in litter decomposition remains unclear, with contrasting results being published. Here, we focus on a litter transplantation experiment from oak forests (home site) to two away sites without oak in South Tyrol (Italy).

View Article and Find Full Text PDF

Litter decomposition is the main source of mineral nitrogen (N) in terrestrial ecosystem and a key step in carbon (C) cycle. Microbial community is the main decomposer, and its specialization on specific litter is considered at the basis of higher decomposition rate in its natural environment than in other forests. However, there are contrasting evidences on how the microbial community responds to a new litter input and if the mass loss is higher in natural environment.

View Article and Find Full Text PDF