In the precision medicine era of cystic fibrosis (CF), therapeutic interventions, by the so-called modulators, target the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The levels of targetable CFTR proteins are a main variable in the success of patient-specific therapy. In turn, the CFTR protein level depends, at least in part, on the level of mRNA.
View Article and Find Full Text PDFThe pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes.
View Article and Find Full Text PDFQuestion: Cystic fibrosis (CF) is due to pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Recent improvements have enabled pharmacological therapy aiming at restoring mutated CFTR expression and function. CFTR "modulators" have revolutionised the CF therapeutic landscape, particularly the last approved, Trikafta.
View Article and Find Full Text PDFThe interplay between the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC) in respiratory epithelia has a crucial role in the pathogenesis of cystic fibrosis (CF). The comprehension of the mechanisms of transcriptional regulation of ENaC genes is pivotal to better detail the pathogenic mechanism and the genotype-phenotype relationship in CF, as well as to realize therapeutic approaches based on the transcriptional downregulation of ENaC genes. Since we aimed to study the epigenetic transcriptional control of ENaC genes, an assessment of their expression and DNA methylation patterns in different human cell lines, nasal brushing samples, and leucocytes was performed.
View Article and Find Full Text PDFGenetic analysis in cystic fibrosis (CF) is a difficult task. Within the many causes of variability and uncertainty, a major determinant is poor knowledge of the functional effect of most DNA variants of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. In turn, knowledge of the effect of a CFTR variant has dramatic diagnostic, prognostic and, in the era of CF precision medicine, also therapeutic consequences.
View Article and Find Full Text PDFTwo novel and related pathogenic variants of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene were structurally and functionally characterized. These alterations have not been previously described in literature. Two patients with diagnosis of Cystic Fibrosis (CF) based on the presence of one mutated allele, p.
View Article and Find Full Text PDFL-dopa-induced dyskinesias (LID) is a common motor side effect of levodopa therapy of Parkinson's disease (PD). The identified predictors may only partially account for the risk of developing LID and genetic factors may contribute to this variability. The present study is aimed to investigate whether polymorphisms in the dopamine transporter gene (DAT) are associated with the risk of developing LID.
View Article and Find Full Text PDFGenetic polymorphism in the 3'-untranslated region (3'-UTR) of the dopamine transporter (DAT) gene has been reported in both human and nonhuman primates, and the variable number of tandem repeats (VNTR) polymorphism has been related to several neurological and psychiatric disorders. As New World primates have been employed as models in biomedical research in these fields, in the present study we assessed genetic variation in the DAT gene in 25 robust capuchin monkeys (Sapajus spp.) and 39 common marmosets (Callithrix jacchus).
View Article and Find Full Text PDFMore than 2000 sequence variations of the cystic fibrosis transmembrane conductance regulator gene are known. The marked genetic heterogeneity, poor functional characterization of the vast majority of sequence variations, and an uncertain genotype-phenotype relationship complicate the definition of mutational search strategies. We studied the effect of the marked genetic heterogeneity detected in a case series comprising 610 patients of cystic fibrosis (CF), grouped in different clinical macrocategories, on the operative characteristics of the genetic test designed to fully characterize CF patients.
View Article and Find Full Text PDFCellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR) uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction.
View Article and Find Full Text PDFCystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype-phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view.
View Article and Find Full Text PDFBackground: Automated DNA sequencing produces large amounts of data that need to be analyzed by appropriate software. Personalization of software can be a difficult and time-consuming task, especially if a large number of mutations have to be analyzed.
Methods: The Applied BioSystems SeqScape software, based on the KB basecaller algorithm, is a versatile tool that can be used for mutational analysis and for data quality assessment of sequences belonging to any gene of interest.
Purpose: To evaluate the role of complex alleles, with two or more mutations in cis position, of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in the definition of the genotype-phenotype relationship in cystic fibrosis (CF), and to evaluate the functional significance of the highly controversial L997F CFTR mutation.
Methods: We evaluated the diagnosis of CF or CFTR-related disorders in 12 unrelated subjects with highly variable phenotypes. According to a first CFTR mutational analysis, subjects appeared to be compound heterozygotes for a classic mutation and the L997F mutation.