Publications by authors named "Silvia Paula-Gomes"

NLRP3 inflammasome has a key role in chronic low-grade metabolic inflammation, and its excessive activation may contribute to the beginning and progression of several diseases, including hepatic insulin resistance (hIR). Thus, this review aims to highlight the role of NLRP3 inflammasome and oxidative stress in the development of hIR and evidence related to phytochemical intervention in this context. In this review, we will address the hIR pathogenesis related to reactive oxygen species (ROS) production mechanisms, involving oxidized mitochondrial DNA (ox-mtDNA) and thioredoxin interacting protein (TXNIP) induction in the NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Context: The role of silymarin in hepatic lipid dysfunction and its possible mechanisms of action were investigated.

Objective: To evaluate the effects of silymarin on hepatic and metabolic profiles in mice fed with 30% fructose for 8 weeks.

Methods: We evaluated the antioxidant profile of silymarin; mice consumed 30% fructose and were treated with silymarin (120mg/kg/day or 240 mg/kg/day).

View Article and Find Full Text PDF

Objective: Although it is well established that urocortin 2 (Ucn2), a peptide member of the corticotrophin releasing factor (CRF) family, and its specific corticotrophin-releasing factor 2 receptor (CRF2R) are highly expressed in skeletal muscle, the role of this peptide in the regulation of skeletal muscle mass and protein metabolism remains elusive.

Methods: To elucidate the mechanisms how Ucn2 directly controls protein metabolism in skeletal muscles of normal mice, we carried out genetic tools, physiological and molecular analyses of muscles in vivo and in vitro.

Results: Here, we demonstrated that Ucn2 overexpression activated cAMP signaling and promoted an expressive muscle hypertrophy associated with higher rates of protein synthesis and activation of Akt/mTOR and ERK1/2 signaling pathways.

View Article and Find Full Text PDF

Calcitonin Gene-Related Peptide (CGRP) is a potent vasodilator peptide widely distributed in the central nervous system and various peripheral tissues, including cardiac muscle. However, its role in heart protein metabolism remains unknown. We examined the acute effects of CGRP on autophagy and the related signaling pathways in the heart mice and cultured neonatal cardiomyocytes.

View Article and Find Full Text PDF

Aim: There is growing evidence about the ability of cyclic adenosine monophosphate (cAMP) signaling and nonselective phosphodiesterase (PDE) inhibitors on mitigate muscle atrophy. PDE4 accounts for the major cAMP hydrolyzing activity in skeletal muscles, therefore advances are necessary about the consequences of treatment with PDE4 inhibitors on protein breakdown in atrophied muscles. We postulated that rolipram (selective PDE4 inhibitor) may activate cAMP downstream effectors, inhibiting proteolytic systems in skeletal muscles of diabetic rats.

View Article and Find Full Text PDF

Although we have shown that catecholamines suppress the activity of the Ubiquitin-Proteasome System (UPS) and atrophy-related genes expression through a cAMP-dependent manner in skeletal muscle from rodents, the underlying mechanisms remain unclear. Here, we report that a single injection of norepinephrine (NE; 1 mg kg ; s.c) attenuated the fasting-induced up-regulation of FoxO-target genes in tibialis anterior (TA) muscles by the stimulation of PKA/CREB and Akt/FoxO1 signaling pathways.

View Article and Find Full Text PDF

The sympathetic nervous system (SNS) activates cAMP signaling and promotes trophic effects on brown adipose tissue (BAT) through poorly understood mechanisms. Because norepinephrine has been found to induce antiproteolytic effects on muscle and heart, we hypothesized that the SNS could inhibit autophagy in interscapular BAT (IBAT). Here, we describe that selective sympathetic denervation of rat IBAT kept at 25°C induced atrophy, and in parallel dephosphorylated forkhead box class O (FoxO), and increased cathepsin activity, autophagic flux, autophagosome formation, and expression of autophagy-related genes.

View Article and Find Full Text PDF

Advances in the knowledge of the mechanisms controlling protein breakdown in skeletal muscles have allowed the exploration of new options for treating muscle-wasting conditions. Pentoxifylline (PTX), a nonselective phosphodiesterase (PDE) inhibitor, attenuates the loss of muscle mass during catabolic conditions, mainly via inhibiting protein breakdown. The aim of this study was to explore the mechanisms by which PTX inhibits proteolysis in the soleus and extensor digitorum longus (EDL) muscles of streptozotocin-induced diabetic rats.

View Article and Find Full Text PDF

Purpose: Investigate the glycerol-3-phosphate generation pathways in epididymal (EPI) and retroperitoneal (RETRO) adipose tissues from dexamethasone-treated rats.

Methods: Rats were treated with dexamethasone for 7 days. Glycerol-3-phosphate generation pathways via glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into triacylglycerol (TAG)-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol.

View Article and Find Full Text PDF

Rationale: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood.

View Article and Find Full Text PDF

Muscle loss occurs following injury and immobilization in adulthood and childhood, which impairs the rehabilitation process; however, far fewer studies have been conducted analyzing atrophic response in infants. This work investigated first the morphological and molecular mechanisms involved in immobilization-induced atrophy in soleus muscles from rats at different stages of postnatal development [i.e.

View Article and Find Full Text PDF

Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes.

View Article and Find Full Text PDF

This study measures the curcumin concentration in rat plasma by liquid chromatography and investigates the changes in the glucose tolerance and insulin sensitivity of streptozotocin-diabetic rats treated with curcumin-enriched yoghurt. The analytical method for curcumin detection was linear from 10 to 500 ng/mL. The C max⁡ and the time to reach C max⁡ (t max⁡) of curcumin in plasma were 3.

View Article and Find Full Text PDF

The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats.

View Article and Find Full Text PDF

The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[(14)C]-pyruvate into glycerol-TAG.

View Article and Find Full Text PDF

Although it is well known that administration of the selective β(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein.

View Article and Find Full Text PDF