Dysregulated EGFR in glioblastoma may inactivate the key autophagy protein Beclin1. Each of high EGFR and low Beclin1 protein expression, independently, has been associated with tumor progression and poor prognosis. High (H) compared to low (L) expression of EGFR and Beclin1 is here correlated with main clinical data in 117 patients after chemo- and radiotherapy.
View Article and Find Full Text PDFIn this work a total of 949 fish samples were analysed for the identification of nematode larvae belonging to the Anisakidae family. Biomolecular application for the identification of Anisakidae larvae can be an optimal instrument for the traceability of fish products, described on the Reg. EC 178/2002.
View Article and Find Full Text PDFGlioblastoma (GBM) remains the most aggressive and lethal brain tumor due to its molecular heterogeneity and high motility and invasion capabilities of its cells, resulting in high resistance to current standard treatments (surgery, followed by ionizing radiation combined with Temozolomide chemotherapy administration). Locus amplification, gene overexpression, and genetic mutations of epidermal growth factor receptor (EGFR) are hallmarks of GBM that can ectopically activate downstream signaling oncogenic cascades such as PI3K/Akt/mTOR pathway. Importantly, alteration of this pathway, involved also in the regulation of autophagy process, can improve radioresistance in GBM cells, thus promoting the aggressive phenotype of this tumor.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by cleaving or repressing the translation of target mRNAs. In mammals, their function mainly represses the mRNA transcripts via imperfect complementary sequences in the 3'UTR of target mRNAs. Several miRNAs have been recently reported to be involved in modulation of different genes in tumors, including glioblastoma, the most frequent brain tumor in adults.
View Article and Find Full Text PDFATG7 is a key autophagy-promoting gene that plays a critical role in the regulation of cell death and survival of various cell types. We report here that microRNAs (miRNAs), a class of endogenous 22-24 nucleotide noncoding RNA molecules able to affect stability and translation of mRNA, may represent a novel mechanism for regulating ATG7 expression and therefore autophagy. We demonstrated that ATG7 is a potential target for miR-17, and this miRNA could negatively regulate ATG7 expression, resulting in a modulation of the autophagic status in T98G glioblastoma cells.
View Article and Find Full Text PDFJ Cell Physiol
January 2013
Autophagy is a so-called "self-eating" system responsible for degrading long-lived proteins and cytoplasmic organelles, whose products are recycled to maintain cellular homeostasis. This ability makes autophagy a good candidate for a survival mechanism in response to several stresses, including the tumor cell transformation. In particular, recent studies suggested that autophagy functions as a pro-death mechanism within different tumor contexts.
View Article and Find Full Text PDFGlioblastoma (GB) has a poor prognosis, despite current multimodality treatment. Beside surgical resection, adjuvant ionizing radiation (IR) combined with Temozolomide (TMZ) drug administration is the standard therapy for GB. This currently combined radio-chemotherapy treatment resulted in glial tumor cell death induction, whose main molecular death pathways are still not completely deciphered.
View Article and Find Full Text PDFMalignant gliomas are the most common and lethal primary central nervous system neoplasms. Several intriguing lines of evidence have recently emerged indicating that the cellular prion protein (PrPC) may exert neuro- and cyto-protective functions: PrPC overexpression protects cultured neurons and also tumor cell lines exposed to various pro-apoptotic stimuli while, on the contrary, PrPC silencing sensitizes Adriamycin-resistant human breast carcinoma cells to TRAIL-mediated cell death. In order to determine if PrPC is involved in the resistance of glial tumors to cell death, the effects of cellular prion protein downregulation by antisense approach were investigated in different human malignant glioma cell lines.
View Article and Find Full Text PDFIn this study the mRNA levels of five EGFR indirectly related genes, EGFR, HB-EGF, ADAM17, PTEN, and MMP9, have been assessed by Real-time PCR in a panel of 37 glioblastoma multiforme specimens and in 5 normal brain samples; as a result, in glioblastoma, ADAM17 and PTEN expression was significantly lower than in normal brain samples, and, in particular, a statistically significant inverse correlation was found between PTEN and MMP9 mRNA levels. To verify if this correlation was conserved in gliomas, PTEN and MMP9 expression was further investigated in an additional panel of 16 anaplastic astrocytoma specimens and, in parallel, in different human normal and astrocytic tumor cell lines. In anaplastic astrocytomas PTEN expression was significantly higher than in glioblastoma multiforme, but no significant correlation was found between PTEN and MMP9 expression.
View Article and Find Full Text PDFDoppel (Dpl) protein is the paralogue of the cellular prion (PrP(C)) protein. In humans, Dpl is expressed almost exclusively in testis where it is involved in spermatogenesis. Recently, the protein has been described to be ectopically expressed in astrocytomas and its potential association to the brain tumor malignancy progression has been advanced.
View Article and Find Full Text PDFDoppel, a prion-like protein, is a GPI-membrane anchored protein generally not expressed in the Central Nervous System (CNS) of different mammalian species, including human. Nevertheless, in astrocytomas, a particular kind of glial tumors, the doppel encoding gene (PRND) is over-expressed and the corresponding protein product (Dpl) is ectopically localized in the cytoplasm of the tumor cells. In this study we have analysed the sub-cellular localization of Dpl using double-immunofluorescence staining and confocal microscopy examinations in two astrocytoma-derived human cell lines (IPDDC-A2 and D384-MG).
View Article and Find Full Text PDF