Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug.
View Article and Find Full Text PDFGlioblastoma (GBM, grade IV astrocytoma), the most frequently occurring primary brain tumor, presents unique challenges to therapy due to its location, aggressive biological behavior, and diffuse infiltrative growth, thus contributing to having disproportionately high morbidity and mortality [...
View Article and Find Full Text PDFGlioblastoma (GBM) is associated with a very dismal prognosis, and current therapeutic options still retain an overall unsatisfactorily efficacy in clinical practice. Therefore, novel therapeutic approaches and effective medications are highly needed. Since the development of new drugs is an extremely long, complex and expensive process, researchers and clinicians are increasingly considering drug repositioning/repurposing as a valid alternative to the standard research process.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM; grade IV glioma) is characterized by a very short overall survival time and extremely low 5-year survival rates. We intend to promote experimental and clinical research on rationale and scientifically driven drug repurposing. This may represent a safe and often inexpensive way to propose novel pharmacological approaches to GBM.
View Article and Find Full Text PDFBackground: Che-1/AATF (Che-1) is an RNA polymerase II binding protein involved in several cellular processes, including proliferation, apoptosis and response to stress. We have recently demonstrated that Che-1 is able to promote cell proliferation by sustaining global histone acetylation in multiple myeloma (MM) cells where it interacts with histone proteins and competes with HDAC class I members for binding.
Methods: Site-directed Mutagenesis was performed to generate a Che-1 mutant (Che-1 3S) lacking three serine residues (Ser, Ser and Ser) in 308-325 aa region.
HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis.
View Article and Find Full Text PDFBackground: Glioblastoma multiforme is a CNS cancer characterized by diffuse infiltrative growth, aggressive clinical behavior and very poor prognosis. The state-of-art clinical approach to this disease consists of surgical resection followed by radiotherapy plus concurrent and adjuvant chemotherapy with temozolomide. Tumor recurrence occurs in virtually all cases, therefore, despite any treatment, the median survival is very low (14.
View Article and Find Full Text PDFGliomas are tumors that originate from the glial tissue, thus involving the central nervous system with varying degrees of malignancy. The most aggressive and frequent form is glioblastoma multiforme, a disease characterized by resistance to therapies, frequent recurrences, and extremely poor median survival time. Data on overall glioma case studies demonstrate clear sex disparities regarding incidence, prognosis, drug toxicity, clinical outcome, and, recently, prediction of therapeutic response.
View Article and Find Full Text PDFBackground: Glioblastoma multiforme (GBM), due to its location, aggressiveness, heterogeneity and infiltrative growth, is characterized by an exceptionally dismal clinical outcome. The small molecule SI113, recently identified as a SGK1 inhibitor, has proven to be effective in restraining GBM growth in vitro and in vivo, showing also encouraging results when employed in combination with other antineoplastic drugs or radiotherapy. Our aim was to explore the pharmacological features of SI113 in GBM cells in order to elucidate the pivotal molecular pathways affected by the drug.
View Article and Find Full Text PDFThe small molecule SI113 is an inhibitor of the kinase activity of SGK1, a key biological regulator acting on the PI3K/mTOR signal transduction pathway. Several studies demonstrate that this compound is able to strongly restrain cancer growth in vitro and in vivo, alone or in associative antineoplastic treatments, being able to elicit an autophagic response, either cytotoxic or cytoprotective. To elucidate more exhaustively the molecular mechanisms targeted by SI113, we performed activity-based protein profiling (ABPP) proteomic analysis using a kinase enrichment procedure.
View Article and Find Full Text PDFIn vertebrates, the telomere repeat containing long, non-coding RNA TERRA is prone to form RNA:DNA hybrids at telomeres. This results in the formation of R-loop structures, replication stress and telomere instability, but also contributes to alternative lengthening of telomeres (ALT). Here, we identify the TERRA binding proteins NONO and SFPQ as novel regulators of RNA:DNA hybrid related telomere instability.
View Article and Find Full Text PDFBackground: Glioblastoma Multiforme is the deadliest type of brain tumor and is characterized by very poor prognosis with a limited overall survival. Current optimal therapeutic approach has essentially remained unchanged for more than a decade, consisting in maximal surgical resection followed by radiotherapy plus temozolomide.
Main Body: Such a dismal patient outcome represents a compelling need for innovative and effective therapeutic approaches.
Combined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models.
View Article and Find Full Text PDFPhosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability.
View Article and Find Full Text PDFAutophagy is an evolutionary conserved catabolic process involved in several physiological and pathological processes such as cancer and neurodegeneration. Autophagy initiation signaling requires both the ULK1 kinase and the BECLIN 1-VPS34 core complex to generate autophagosomes, double-membraned vesicles that transfer cellular contents to lysosomes. In this study, we show that the BECLIN 1-VPS34 complex is tethered to the cytoskeleton through an interaction between the BECLIN 1-interacting protein AMBRA1 and dynein light chains 1/2.
View Article and Find Full Text PDFMilk fat globules (MFGs) are secretory vesicles assembled and secreted by mammary epithelial cells during lactation. They consist of fat globules surrounded by a lipid bilayer membrane which is derived from the apical membrane of the lactating cells. MFGs contain, besides lipids, proteins from the apical plasma membrane and from the cytoplasmatic material.
View Article and Find Full Text PDFProteomics studies employing primary neurons are difficult due to the neurons' characteristics. We have developed a detergent-based fractionation method which reduces complexity of the protein extracts, is sufficiently fast to allow differential proteomics analysis after treatments of neurons for short time periods, can be applied to small numbers of cells directly in culture plates, and allows differential extraction of proteins in a compartment-specific manner. The sequential use of detergent-containing buffers on neurons in culture plates yields four extracts enriched in cytosolic, membrane-bound or enclosed, nuclear, and cytoskeletal proteins.
View Article and Find Full Text PDF