Here we show that stimulation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) treatment induces a time-dependent decrease in glutamate transport activity due to relocalization of the excitatory amino acid carrier 1 (EAAC1) glutamate transporter from the apical surface of polarized epithelial Madin-Darby canine kidney (MDCK) cells to intracellular compartments. The PKC-induced internalization of EAAC1 is negatively regulated by the calcineurin inhibitor cyclosporine A and by the expression of a dominant-negative mutant of the endocytic protein dynamin 1, a well-known target of the phosphatase activity of calcineurin. Using 32P-metabolic labeling experiments, we found unchanged levels of phosphorylated EAAC1, indicating that EAAC1 relocalization does not depend on PKC and calcineurin modification of the transporter, while we found that a target of these modifications was the serine778 residue of dynamin, a calcineurin substrate that in its dephosphorylated form activates the endocytic functions of dynamin.
View Article and Find Full Text PDFIn this study, we examined the role of the L27 [(LIN2-LIN7) domain] and PDZ domain (domain previously found in PSD95-DlgA-ZO-1) for protein-protein interaction of the scaffold protein LIN7 in tight junction (TJ) assembly in Madin-Darby canine kidney (MDCK) cells and found that the stable expression of a LIN7 mutant lacking the L27 domain (DeltaL27 mutant) acts as a dominant interfering protein by inhibiting TJ localization of endogenous LIN7. The loss of LIN7 did not alter the localization of the PALS1 (protein associated with LIN7) partner of the L27 domain but prevented TJ localization of the insulin receptor substrate p53 (IRSp53), a partner of the PDZ domain of LIN7. The function of both L27 and PDZ domains of LIN7 in IRSp53 localization to TJs has been further demonstrated by reducing the expression of LIN7 (LIN7 small hairpin RNA experiments) and by expression of IRSp53 deleted of its motif for PDZ interaction (IRSp53Delta5) or fused to the L27 domain of LIN7 (L27-IRSp53Delta5).
View Article and Find Full Text PDFMitochondrial damage induced by superoxide dismutase (SOD1) mutants has been proposed to have a causative role in the selective degeneration of motoneurons in amyotrophic lateral sclerosis (ALS). In order to investigate the basis of the tissue specificity of mutant SOD1 we compared the effect of the continuous expression of wild-type or mutant (G93A) human SOD1 on mitochondrial morphology in the NSC-34 motoneuronal-like, the N18TG2 neuroblastoma and the non-neuronal Madin-Darby Canine Kidney (MDCK) cell lines. Morphological alterations of mitochondria were observed in NSC-34 expressing the G93A mutant (NSC-G93A) but not the wild-type SOD1, whereas a ten-fold greater level of total expression of the mutant had no effect on mitochondria of non-motoneuronal cell lines.
View Article and Find Full Text PDFThe Na/Cl-dependent BGT1 transporter has osmoprotective functions by importing the small osmolyte betaine into the cytosol of renal medullary epithelial cells. We have demonstrated previously that the surface localization of the transporter in Madin-Darby canine kidney cells depends on its association with the LIN7 PDZ protein through a PDZ target sequence in the last 5 residues of the transporter (-KETHL). Here we describe a protein kinase C (PKC)-mediated mechanism regulating the association between BGT1 and LIN7.
View Article and Find Full Text PDFIt has been suggested that glutamate-induced excitotoxicity plays a central role in the development of motor neuron diseases such as amyotrophic lateral sclerosis (ALS). The GLT-1 isoform of the glutamate transporter gene family is the most important transporter involved in keeping extracellular glutamate concentration below neurotoxic levels. Its loss and an increase in extracellular glutamate has been documented in cases of sporadic and familial ALS, as well as in animal models expressing ALS-linked Cu2+-Zn2+ superoxide dismutase (SOD1) mutations, but the underlying molecular mechanisms are still unclear.
View Article and Find Full Text PDFAs little is known about the role of cadherin-mediated cell-cell adhesion in astrocytes and its alteration in migrating and invasive glioblastomas, we investigated its molecular composition and organisation in primary cultured astrocytes and the T98G and U373MG glioblastoma cell lines. Biochemical and morphological analysis indicated that all three cell types express all of the structural components of the adhesion system, including the LIN-7 PDZ protein, a novel component involved in the organisation of the junctional domain in epithelia and neurons. However, only the astrocytes and T98G cells generated and maintained mature adhesive junctional domains to which LIN-7 was recruited.
View Article and Find Full Text PDF