Publications by authors named "Silvia Markova"

Species invading non-native habitats can cause irreversible environmental damage and economic harm. Yet, how introduced species become widespread invaders remains poorly understood. Adaptation within native-range habitats and rapid adaptation to new environments may both influence invasion success.

View Article and Find Full Text PDF

Genetic admixture introduces new variants at relatively high frequencies, potentially aiding rapid responses to environmental changes. Here, we evaluate its role in adaptive variation related to climatic conditions in bank voles (Clethrionomys glareolus) in Britain, using whole-genome data. Our results reveal loci showing excess ancestry from one of the two postglacial colonist populations inconsistent with overall admixture patterns.

View Article and Find Full Text PDF

As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus).

View Article and Find Full Text PDF

The most likely pathway for many species to survive future climate change is by pre-existing trait variation providing a fitness advantage under the new climate. Here we evaluate the potential role of haemoglobin (Hb) variation in bank voles under future climate change. We model gene-climate relationships for two functionally distinct Hb types, HbS and HbF, which have a north-south distribution in Britain presenting an unusually tractable system linking genetic variation in physiology to geographical and temporal variation in climate.

View Article and Find Full Text PDF

Understanding the historical contributions of differing glacial refugia is key to evaluating the roles of microevolutionary forces, such as isolation, introgression, and selection in shaping genomic diversity in present-day populations. In Europe, where both Mediterranean and extra-Mediterranean (e.g.

View Article and Find Full Text PDF

Species-level environmental niche modeling has been crucial in efforts to understand how species respond to climate variation and change. However, species often exhibit local adaptation and intraspecific niche differences that may be important to consider in predicting responses to climate. Here, we explore whether phylogeographic lineages of the bank vole originating from different glacial refugia (Carpathian, Western, Eastern, and Southern) show niche differentiation, which would suggest a role for local adaptation in biogeography of this widespread Eurasian small mammal.

View Article and Find Full Text PDF

The history of repeated northern glacial cycling and southern climatic stability has long dominated explanations for how genetic diversity is distributed within temperate species in Eurasia and North America. However, growing evidence indicates the importance of cryptic refugia for northern colonization dynamics. An important geographic region to assess this is Fennoscandia, where recolonization at the end of the last glaciation was restricted to specific routes and temporal windows.

View Article and Find Full Text PDF

Increasing evidence suggests that adaptation to diverse environments often involves selection on existing variation rather than new mutations. A previous study identified a nonsynonymous single nucleotide polymorphism (SNP) in exon 2 of two paralogous β-globin genes of the bank vole () in Britain in which the ancestral serine (Ser) and the derived cysteine (Cys) allele represent geographically partitioned functional variation affecting the erythrocyte antioxidative capacity. Here we studied the geographical pattern of the two-locus Ser/Cys polymorphism throughout Europe and tested for the geographic correlation between environmental variables and allele frequency, expected if the polymorphism was under spatially heterogeneous environment-related selection.

View Article and Find Full Text PDF

Current species distributions at high latitudes are the product of expansion from glacial refugia into previously uninhabitable areas at the end of the last glaciation. The traditional view of postglacial colonization is that southern populations expanded their ranges into unoccupied northern territories. Recent findings on mitochondrial DNA (mtDNA) of British small mammals have challenged this simple colonization scenario by demonstrating a more complex genetic turnover in Britain during the Pleistocene-Holocene transition where one mtDNA clade of each species was replaced by another mtDNA clade of the same species.

View Article and Find Full Text PDF

Background: Although posttranscriptional modification of mitochondrial (mt) transcripts plays key roles in completion of the coding information and in the expression of mtDNA-encoded genes, there is little experimental evidence on the polyadenylation status and the location of mt gene poly(A) sites for non-human mammals.

Results: Poly(A)-enriched RNA-Seq reads collected for two wild-caught bank voles (Clethrionomys glareolus) were mapped to the complete mitochondrial genome of that species. Transcript polyadenylation was detected as unmapped adenine residues at the ends of the mapped reads.

View Article and Find Full Text PDF

Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data.

View Article and Find Full Text PDF

We have revisited the mtDNA phylogeny of the bank vole Clethrionomys glareolus based on Sanger and next-generation Illumina sequencing of 32 complete mitochondrial genomes. The bank vole is a key study species for understanding the response of European fauna to the climate change following the Last Glacial Maximum (LGM) and one of the most convincing examples of a woodland mammal surviving in cryptic northern glacial refugia in Europe. The genomes sequenced included multiple representatives of each of the eight bank vole clades previously described based on cytochrome b (cob) sequences.

View Article and Find Full Text PDF

Over the years, researchers have used presumptively neutral molecular variation to infer the origins of current species' distributions in northern latitudes (especially Europe). However, several reported examples of genic and chromosomal replacements suggest that end-glacial colonizations of particular northern areas may have involved genetic input from different source populations at different times, coupled with competition and selection. We investigate the functional consequences of differences between two bank vole (Clethrionomys glareolus) haemoglobins deriving from different glacial refugia, one of which partially replaced the other in Britain during end-glacial climate warming.

View Article and Find Full Text PDF

We present the first complete sequence of the bank vole (Clethrionomys glareolus) mitochondrial genome (GenBank accession no. KF918859). The bank vole mitogenome is 16,353 base pairs long and shows the gene content, genome architecture and gene strand asymmetry typical for mammals.

View Article and Find Full Text PDF

The North American ecological species Daphniapulicaria and Daphniapulex are thought to have diverged from a common ancestor by adaptation to sympatric but ecologically distinct lake and pond habitats respectively. Based on mtDNA relationships, European D. pulicaria is considered a different species only distantly related to its North American counterpart, but both species share a lactate dehydrogenase (Ldh) allele F supposedly involved in lake adaptation in North America, and the same allele is also carried by the related Holarctic Daphniatenebrosa.

View Article and Find Full Text PDF

Background: Multiple transitions to obligate parthenogenesis have occurred in the Daphnia pulex complex in North America. These newly formed asexual lineages are differentially distributed being found predominantly at high latitudes. This conforms to the rule of geographical parthenogenesis postulating prevalence of asexuals at high latitudes and altitudes.

View Article and Find Full Text PDF

The study of species complexes is of particular interest to understand how evolutionary young species maintain genomic integrity. The Daphnia pulex complex has been intensively studied as it includes species that dominate freshwater environments in the Northern hemisphere and as it is the sole North American complex that shows transitions to obligate parthenogenesis. Past studies using mitochondrial markers have revealed the presence of 10 distinct lineages in the complex.

View Article and Find Full Text PDF

Understanding how species responded to past climate change can provide information about how they may respond to the current global warming. Here we show how a European reptile species responded to the last natural global warming event at the Pleistocene-Holocene transition that led to the Holocene climatic optimum approximately 5000-8000 years ago. The Aesculapian snake, Zamenis longissimus, is a thermophilous species whose present-day distribution in the southern half of Europe is a remnant of much wider range during the Holocene climatic optimum when populations occurred as far north as Denmark.

View Article and Find Full Text PDF

Freshwater fauna of ancient lakes frequently contain endemic taxa thought to have originated during the long existence of these lakes, yet uncertainties remain as to whether they represent distinct genetic lineages with respect to more widespread relatives and to the relative roles of isolation and dispersal in their evolution. Phylogenetic analyses of sequence variation at nuclear and mitochondrial genes were used to examine these issues for the freshwater fish genus Barbus in two European ancient lake systems on the Balkan Peninsula. The nuclear and mitochondrial data yielded concordant phylogeographic patterns though incomplete sorting of nuclear haplotypes between some mitochondrial clades was detected.

View Article and Find Full Text PDF

Recent genetic studies have challenged the traditional view that the ancestors of British Celtic people spread from central Europe during the Iron Age and have suggested a much earlier origin for them as part of the human recolonization of Britain at the end of the last glaciation. Here we propose that small mammals provide an analogue to help resolve this controversy. Previous studies have shown that common shrews (Sorex araneus) with particular chromosomal characteristics and water voles (Arvicola terrestris) of a specific mitochondrial (mt) DNA lineage have peripheral western/northern distributions with striking similarities to that of Celtic people.

View Article and Find Full Text PDF

The Black and Caspian Seas have experienced alternating periods of isolation and interconnection over many Milankovitch climate oscillations and most recently became separated when the meltwater overflow from the Caspian Sea ceased at the end of the last glaciation. Climate-induced habitat changes have indisputably had profound impacts on distribution and demography of aquatic species, yet uncertainties remain about the relative roles of isolation and dispersal in the response of species shared between the Black and Caspian Sea basins. We examined these issues using phylogeographical analysis of an anadromous cyprinid fish Rutilus frisii.

View Article and Find Full Text PDF

The water fleas of the Daphnia pulex complex play a key role in freshwater ecosystems throughout the northern hemisphere. Despite the fact that they have been the subject of study for numerous biological disciplines, their phylogeny and species delimitation remain controversial. We used DNA sequence variation of the mitochondrial ND5 gene to reconstruct the phylogenetic relationships of D.

View Article and Find Full Text PDF