Publications by authors named "Silvia Magalhaes Novais"

Background: Amplification of HER2, a receptor tyrosine kinase and a breast cancer-linked oncogene, is associated with aggressive disease. HER2 protein is localised mostly at the cell membrane, but a fraction translocates to mitochondria. Whether and how mitochondrial HER2 contributes to tumorigenicity is currently unknown.

View Article and Find Full Text PDF

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy.

View Article and Find Full Text PDF

Given the relatively long life of stem cells (SCs), efficient mechanisms of quality control to balance cell survival and resistance to external and internal stress are required. Our objective was to test the relevance of cell quality control mechanisms for SCs maintenance, differentiation and resistance to cell death. We compared cell quality control in P19 stem cells (P19SCs) before and after differentiation (P19dCs).

View Article and Find Full Text PDF

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis.

View Article and Find Full Text PDF

Mitochondria and oxidative phosphorylation (OXPHOS) are emerging as intriguing targets for the efficient elimination of cancer cells. The specificity of this approach is aided by the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition. Recently we discovered that mitochondrial targeting can also be employed to eliminate senescent cells, where it breaks the interplay between OXPHOS and ATP transporters that appear important for the maintenance of mitochondrial morphology and viability in the senescent setting.

View Article and Find Full Text PDF

Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII, serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CII leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase.

View Article and Find Full Text PDF

Mitochondrial electron transport chain (ETC) targeting shows a great promise in cancer therapy. It is particularly effective in tumors with high ETC activity where ETC-derived reactive oxygen species (ROS) are efficiently induced. Why modern ETC-targeted compounds are tolerated on the organismal level remains unclear.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) have been suggested to be responsible for tumor re-growth and relapse. Physiological and morphological knowledge of CSCs may be essential for the development of new therapeutic strategies targeting cancer development, progression, and recurrence. Current research is focused on a deeper understanding of CSCs metabolic profiles, taking into consideration their energy demands.

View Article and Find Full Text PDF

Aims: It is still unclear why anthracycline treatment results in a cardiac-specific myopathy. We investigated whether selective doxorubicin (DOX) cardiotoxicity involving mitochondrial degeneration is explained by different respiratory complexes reserves between tissues by comparing and contrasting treatment effects in heart vs liver and kidney. Alternatively, we have also explored if the degeneration is due to alterations of mitochondrial thresholds to incompatible states.

View Article and Find Full Text PDF

Sirtuins regulate several processes associated with tumor development. Resveratrol was shown to stimulate sirtuin 1 and 3 (SIRT1/3) activities and to result in cytotoxicity for some tumor types. The relationship between modulation of sirtuin activities, cellular metabolic remodeling and resveratrol cytotoxicity mechanism on breast cancer cells is still an open question.

View Article and Find Full Text PDF

Background: The employment of dietary strategies such as ketogenic diets, which force cells to alter their energy source, has shown efficacy in the treatment of several diseases. Ketogenic diets are composed of high fat, moderate protein and low carbohydrates, which favour mitochondrial respiration rather than glycolysis for energy metabolism.

Design: This review focuses on how oncological, neurological and mitochondrial disorders have been targeted by ketogenic diets, their metabolic effects, and the possible mechanisms of action on mitochondrial energy homeostasis.

View Article and Find Full Text PDF

Mitochondrial bioenergetics is based on the generation of the protonmotive force by the electron transport chain. The protonmotive force is used by mitochondria for different critical aspects of its normal function, ranging from calcium accumulation to the synthesis of ATP. The transmembrane electric potential (ΔΨ) is the major component of the protonmotive force and is also the main responsible for ATP synthesis by mitochondrial ATP synthase.

View Article and Find Full Text PDF

Although melatonin oncostatic and cytotoxic effects have been described in different types of cancer cells, the specific mechanisms leading to its antitumoral effects and their metabolic context specificity are still not completely understood. Here, we evaluated the effects of melatonin in P19 embryonal carcinoma stem cells (CSCs) and in their differentiated counterparts, cultured in either high glucose medium or in a galactose (glucose-free) medium which leads to glycolytic suppression and increased mitochondrial metabolism. We found that highly glycolytic P19 CSCs were less susceptible to melatonin antitumoral effects while cell populations relying on oxidative metabolism for ATP production were more affected.

View Article and Find Full Text PDF