Viruses are intimately linked with their hosts and especially dependent on gene-for-gene interactions to establish successful infections. On the host side, defence mechanisms such as tolerance and resistance can occur within the same species, leading to differing virus accumulation in relation to symptomology and plant fitness. The identification of novel resistance genes against viruses and susceptibility factors is an important part of understanding viral patho-genesis and securing food production.
View Article and Find Full Text PDFBiomolecular condensation is a multipurpose cellular process that viruses use ubiquitously during their multiplication. Cauliflower mosaic virus replication complexes are condensates that differ from those of most viruses, as they are nonmembranous assemblies that consist of RNA and protein, mainly the viral protein P6. Although these viral factories (VFs) were described half a century ago, with many observations that followed since, functional details of the condensation process and the properties and relevance of VFs have remained enigmatic.
View Article and Find Full Text PDFMacroautophagy/autophagy is a conserved intracellular degradation pathway that has recently emerged as an integral part of plant responses to virus infection. The known mechanisms of autophagy range from the selective degradation of viral components to a more general attenuation of disease symptoms. In addition, several viruses are able to manipulate the autophagy machinery and counteract autophagy-dependent resistance.
View Article and Find Full Text PDFTwo isolates of Turnip mosaic virus (UK 1 and JPN 1), representative of two different viral strains, induced differential alterations on secondary cell wall (SCW) development in , suggesting cell-type specific effects of these viral infections. These potential effects were analyzed in inflorescence stems and flowers of infected plants, together with other possible cellular effects of the infections. Results obtained from macroscopic and histochemical analyses showed that infection with either virus significantly narrowed stem area, but defects in SCW were only found in JPN 1 infections.
View Article and Find Full Text PDFVirus infections affect plant developmental traits but this aspect of the interaction has not been extensively studied so far. Two strains of Turnip mosaic virus differentially affect Arabidopsis development, especially flower stalk elongation, which allowed phenotypical, cellular, and molecular characterization of the viral determinant, the P3 protein. Transiently expressed wild-type green fluorescent protein-tagged P3 proteins of both strains and selected mutants of them revealed important differences in their behaviour as endoplasmic reticulum (ER)-associated peripheral proteins flowing along the reticulum, forming punctate accumulations.
View Article and Find Full Text PDFResearch in virology has usually focused on one selected host-virus pathosystem to examine the mechanisms underlying a particular disease. However, as exemplified by the mechanistically versatile suppression of antiviral RNA silencing by plant viruses, there may be functionally convergent evolution. Assuming this is a widespread feature, we propose that effector proteins from diverse plant viruses can be a powerful resource for discovering new regulatory mechanisms of distinct cellular pathways.
View Article and Find Full Text PDFTwo different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A.
View Article and Find Full Text PDFVirulence evolution may have far-reaching consequences for virus epidemiology and emergence, and virologists have devoted increasing effort to understand the modulators of this process. However, still little is known on the mechanisms and determinants of virulence evolution in sterilizing viruses that, as they prevent host reproduction, may have devastating effects on host populations. Theory predicts that sterilizing parasites, including viruses, would evolve towards lower virulence and absolute host sterilization to optimize the exploitation of host resources and maximize fitness.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2015
Turnip mosaic virus (TuMV) infections affect many Arabidopsis developmental traits. This paper analyzes, at different levels, the development-related differential alterations induced by different strains of TuMV, represented by isolates UK 1 and JPN 1. The genomic sequence of JPN 1 TuMV isolate revealed highest divergence in the P1 and P3 viral cistrons, upon comparison with the UK 1 sequence.
View Article and Find Full Text PDF