Plant copper/quinone amine oxidases are homodimeric enzymes containing Cu(II) and a quinone derivative of a tyrosyl residue (2,4,5-trihydroxyphenylalanine, TPQ) as cofactors. These enzymes catalyze the oxidative deamination of primary amines by a classical ping-pong mechanism, i.e.
View Article and Find Full Text PDFThe changes in the heme environment and overall structure occurring during reversible thermal inactivation and in denaturant guanidinium of Euphorbia characias latex peroxidase (ELP) were investigated in the presence and absence of calcium ions. Native active enzyme had an absorption spectrum typical of a quantum-mixed spin ferric heme protein. After 40 min at 60 degrees C ELP was fully inactivated showing the spectroscopic behavior of a pure hexacoordinate low-spin protein.
View Article and Find Full Text PDFCalmodulin (CaM) is a ubiquitous Ca(2+) sensor found in all eukaryotes, where it participates in the regulation of diverse calcium-dependent physiological processes. In response to fluctuations of the intracellular concentration of Ca(2+), CaM binds to a set of unrelated target proteins and modulates their activity. In plants, a growing number of CaM-binding proteins have been identified that apparently do not have a counterpart in animals.
View Article and Find Full Text PDFCopper/quinone amine oxidases contain Cu(II) and the quinone of 2,4,5-trihydroxyphenylalanine (topaquinone; TPQ) as cofactors. TPQ is derived by post-translational modification of a conserved tyrosine residue in the protein chain. Major advances have been made during the last decade toward understanding the structure/function relationships of the active site in Cu/TPQ amine oxidases using specific inhibitors.
View Article and Find Full Text PDFPlant copper/topaquinone-containing amine oxidases (CAOs, EC 1.4.3.
View Article and Find Full Text PDFThe reaction of NO-derivatized polyamines called "NONOates" with an amine oxidase from lentil seedlings was studied. 3,3-Bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA-NONOate) and 3,3'-(hydroxynitrosohydrazino)bis-1-propanamine (DPTA-NONOate) were found to be irreversible inactivators of the lentil enzyme. The spectrum of the protein was strongly affected in the course of reaction with both compounds, leading to the formation of a covalent adduct with a stable band at 334 nm.
View Article and Find Full Text PDFThe catalysis of class III plant peroxidases is described based on the reaction scheme of horseradish peroxidase. The mechanism consists in four distinct steps: (a) binding of peroxide to the heme-Fe(III) to form a very unstable peroxide complex, Compound 0; (b) oxidation of the iron to generate Compound I, a ferryl species with a pi-cation radical in the porphyrin ring; (c) reduction of Compound I by one substrate molecule to produce a substrate radical and another ferryl species, Compound II; (d) reduction of Compound II by a second substrate molecute to release a second substrate radical and regenerate the native enzyme. Under unfavourable conditions some inactive enzyme species can be formed, known as dead-end species.
View Article and Find Full Text PDFCopper amine oxidase from lentil (Lens esculenta) seedlings was shown to catalyze the oxidative deamination of tyramine and three similar aromatic monoamines, benzylamine, phenylethylamine and 4-methoxyphenylethylamine. Tyramine, an important plant intermediate, was found to be both a substrate and an irreversible inhibitor of the enzyme whereas the other amines were not inhibitory. In the course of tyramine oxidation the enzyme gradually became inactivated with the concomitant appearance of a new absorption at 560 nm due to the formation of a stable adduct.
View Article and Find Full Text PDFA cationic peroxidase was isolated and characterized from the latex of the perennial Mediterranean plant Euphorbia characias. The purified enzyme contained one heme prosthetic group identified as ferric iron-protoporphyrin IX. In addition, the purified peroxidase contained 1 mol of endogenous calcium per mol of enzyme; removal of this calcium ion resulted in almost complete loss of the enzyme activity.
View Article and Find Full Text PDFA cDNA encoding for a copper containing amine oxidase has been isolated and sequenced from young leaves of Euphorbia characias, a perennial mediterranean shrub. A single long open reading frame of 2068 pb encodes a protein composed of 653 amino acids with a molecular mass of about 74 kDa. A putative 24-aminoacid signal peptide precedes the sequence of the mature protein, with characteristics of a secretion signal peptide.
View Article and Find Full Text PDFBackground: Peroxidases are widely distributed and have been isolated from many higher-order plants, animal tissues, yeast and microorganisms. During measurements of peroxidase activities in samples of human plasma, we noticed the presence of a compound in the plasma which was interfering with the peroxidase assay. In this paper we describe the purification and characterization of this factor, which was identified as uric acid.
View Article and Find Full Text PDF